mono_self_tig

This model is a fine-tuned version of castorini/afriteva_v2_base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2721
  • Accuracy: {'accuracy': 0.14912528216704288}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.9645 2.3810 100 2.6627 {'accuracy': 0.11526523702031603}
2.5095 4.7619 200 1.6713 {'accuracy': 0.13896726862302483}
1.9139 7.1429 300 1.5532 {'accuracy': 0.14207110609480814}
1.775 9.5238 400 1.4973 {'accuracy': 0.14235327313769752}
1.7046 11.9048 500 1.4564 {'accuracy': 0.1433408577878104}
1.6074 14.2857 600 1.4001 {'accuracy': 0.14418735891647855}
1.5531 16.6667 700 1.3427 {'accuracy': 0.14672686230248308}
1.4773 19.0476 800 1.3227 {'accuracy': 0.14771444695259595}
1.4325 21.4286 900 1.3025 {'accuracy': 0.1488431151241535}
1.4142 23.8095 1000 1.2946 {'accuracy': 0.14813769751693}
1.392 26.1905 1100 1.2749 {'accuracy': 0.1488431151241535}
1.3836 28.5714 1200 1.2721 {'accuracy': 0.14912528216704288}

Framework versions

  • PEFT 0.7.1
  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.19.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hellina/mono_self_tig

Adapter
(4)
this model