library_name: transformers
language:
- chm
- de
- en
- es
- et
- fi
- fkv
- fr
- hu
- izh
- krl
- kv
- liv
- mdf
- mrj
- myv
- pt
- se
- sma
- smn
- udm
- vep
- vot
tags:
- translation
- opus-mt-tc-bible
license: apache-2.0
model-index:
- name: opus-mt-tc-bible-big-deu_eng_fra_por_spa-fiu
results:
- task:
name: Translation deu-est
type: translation
args: deu-est
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-est
metrics:
- name: BLEU
type: bleu
value: 21.2
- name: chr-F
type: chrf
value: 0.55333
- task:
name: Translation deu-fin
type: translation
args: deu-fin
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-fin
metrics:
- name: BLEU
type: bleu
value: 18.3
- name: chr-F
type: chrf
value: 0.5402
- task:
name: Translation deu-hun
type: translation
args: deu-hun
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-hun
metrics:
- name: BLEU
type: bleu
value: 22
- name: chr-F
type: chrf
value: 0.53579
- task:
name: Translation eng-est
type: translation
args: eng-est
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-est
metrics:
- name: BLEU
type: bleu
value: 26.1
- name: chr-F
type: chrf
value: 0.59496
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 23.1
- name: chr-F
type: chrf
value: 0.57811
- task:
name: Translation eng-hun
type: translation
args: eng-hun
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-hun
metrics:
- name: BLEU
type: bleu
value: 26.7
- name: chr-F
type: chrf
value: 0.5767
- task:
name: Translation fra-est
type: translation
args: fra-est
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-est
metrics:
- name: BLEU
type: bleu
value: 21.2
- name: chr-F
type: chrf
value: 0.54442
- task:
name: Translation fra-fin
type: translation
args: fra-fin
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-fin
metrics:
- name: BLEU
type: bleu
value: 18.5
- name: chr-F
type: chrf
value: 0.53768
- task:
name: Translation fra-hun
type: translation
args: fra-hun
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-hun
metrics:
- name: BLEU
type: bleu
value: 21.2
- name: chr-F
type: chrf
value: 0.52691
- task:
name: Translation por-est
type: translation
args: por-est
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-est
metrics:
- name: BLEU
type: bleu
value: 15.6
- name: chr-F
type: chrf
value: 0.48227
- task:
name: Translation por-fin
type: translation
args: por-fin
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-fin
metrics:
- name: BLEU
type: bleu
value: 18.6
- name: chr-F
type: chrf
value: 0.53772
- task:
name: Translation por-hun
type: translation
args: por-hun
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-hun
metrics:
- name: BLEU
type: bleu
value: 21.8
- name: chr-F
type: chrf
value: 0.53275
- task:
name: Translation spa-est
type: translation
args: spa-est
dataset:
name: flores200-devtest
type: flores200-devtest
args: spa-est
metrics:
- name: BLEU
type: bleu
value: 15.2
- name: chr-F
type: chrf
value: 0.50142
- task:
name: Translation spa-fin
type: translation
args: spa-fin
dataset:
name: flores200-devtest
type: flores200-devtest
args: spa-fin
metrics:
- name: BLEU
type: bleu
value: 13.7
- name: chr-F
type: chrf
value: 0.50401
- task:
name: Translation spa-hun
type: translation
args: spa-hun
dataset:
name: flores200-devtest
type: flores200-devtest
args: spa-hun
metrics:
- name: BLEU
type: bleu
value: 16.4
- name: chr-F
type: chrf
value: 0.49444
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: flores101-devtest
type: flores_101
args: eng fin devtest
metrics:
- name: BLEU
type: bleu
value: 21.9
- name: chr-F
type: chrf
value: 0.57265
- task:
name: Translation fra-hun
type: translation
args: fra-hun
dataset:
name: flores101-devtest
type: flores_101
args: fra hun devtest
metrics:
- name: BLEU
type: bleu
value: 21.2
- name: chr-F
type: chrf
value: 0.52691
- task:
name: Translation por-fin
type: translation
args: por-fin
dataset:
name: flores101-devtest
type: flores_101
args: por fin devtest
metrics:
- name: BLEU
type: bleu
value: 18.6
- name: chr-F
type: chrf
value: 0.53772
- task:
name: Translation por-hun
type: translation
args: por-hun
dataset:
name: flores101-devtest
type: flores_101
args: por hun devtest
metrics:
- name: BLEU
type: bleu
value: 21.8
- name: chr-F
type: chrf
value: 0.53275
- task:
name: Translation spa-est
type: translation
args: spa-est
dataset:
name: flores101-devtest
type: flores_101
args: spa est devtest
metrics:
- name: BLEU
type: bleu
value: 15.2
- name: chr-F
type: chrf
value: 0.50142
- task:
name: Translation spa-fin
type: translation
args: spa-fin
dataset:
name: flores101-devtest
type: flores_101
args: spa fin devtest
metrics:
- name: BLEU
type: bleu
value: 13.7
- name: chr-F
type: chrf
value: 0.50401
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstestALL2016
type: newstestALL2016
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 24.3
- name: chr-F
type: chrf
value: 0.57934
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstestALL2017
type: newstestALL2017
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 26.5
- name: chr-F
type: chrf
value: 0.60204
- task:
name: Translation deu-est
type: translation
args: deu-est
dataset:
name: ntrex128
type: ntrex128
args: deu-est
metrics:
- name: BLEU
type: bleu
value: 18.6
- name: chr-F
type: chrf
value: 0.51761
- task:
name: Translation deu-fin
type: translation
args: deu-fin
dataset:
name: ntrex128
type: ntrex128
args: deu-fin
metrics:
- name: BLEU
type: bleu
value: 15.5
- name: chr-F
type: chrf
value: 0.50759
- task:
name: Translation deu-hun
type: translation
args: deu-hun
dataset:
name: ntrex128
type: ntrex128
args: deu-hun
metrics:
- name: BLEU
type: bleu
value: 15.6
- name: chr-F
type: chrf
value: 0.46171
- task:
name: Translation eng-est
type: translation
args: eng-est
dataset:
name: ntrex128
type: ntrex128
args: eng-est
metrics:
- name: BLEU
type: bleu
value: 24.4
- name: chr-F
type: chrf
value: 0.57099
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: ntrex128
type: ntrex128
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 18.5
- name: chr-F
type: chrf
value: 0.53413
- task:
name: Translation eng-hun
type: translation
args: eng-hun
dataset:
name: ntrex128
type: ntrex128
args: eng-hun
metrics:
- name: BLEU
type: bleu
value: 16.6
- name: chr-F
type: chrf
value: 0.47342
- task:
name: Translation fra-est
type: translation
args: fra-est
dataset:
name: ntrex128
type: ntrex128
args: fra-est
metrics:
- name: BLEU
type: bleu
value: 17.7
- name: chr-F
type: chrf
value: 0.50712
- task:
name: Translation fra-fin
type: translation
args: fra-fin
dataset:
name: ntrex128
type: ntrex128
args: fra-fin
metrics:
- name: BLEU
type: bleu
value: 14.2
- name: chr-F
type: chrf
value: 0.49215
- task:
name: Translation fra-hun
type: translation
args: fra-hun
dataset:
name: ntrex128
type: ntrex128
args: fra-hun
metrics:
- name: BLEU
type: bleu
value: 14.9
- name: chr-F
type: chrf
value: 0.44873
- task:
name: Translation por-est
type: translation
args: por-est
dataset:
name: ntrex128
type: ntrex128
args: por-est
metrics:
- name: BLEU
type: bleu
value: 15.1
- name: chr-F
type: chrf
value: 0.48098
- task:
name: Translation por-fin
type: translation
args: por-fin
dataset:
name: ntrex128
type: ntrex128
args: por-fin
metrics:
- name: BLEU
type: bleu
value: 15
- name: chr-F
type: chrf
value: 0.50875
- task:
name: Translation por-hun
type: translation
args: por-hun
dataset:
name: ntrex128
type: ntrex128
args: por-hun
metrics:
- name: BLEU
type: bleu
value: 15.5
- name: chr-F
type: chrf
value: 0.45817
- task:
name: Translation spa-est
type: translation
args: spa-est
dataset:
name: ntrex128
type: ntrex128
args: spa-est
metrics:
- name: BLEU
type: bleu
value: 18.5
- name: chr-F
type: chrf
value: 0.52158
- task:
name: Translation spa-fin
type: translation
args: spa-fin
dataset:
name: ntrex128
type: ntrex128
args: spa-fin
metrics:
- name: BLEU
type: bleu
value: 15.2
- name: chr-F
type: chrf
value: 0.50947
- task:
name: Translation spa-hun
type: translation
args: spa-hun
dataset:
name: ntrex128
type: ntrex128
args: spa-hun
metrics:
- name: BLEU
type: bleu
value: 16.1
- name: chr-F
type: chrf
value: 0.46051
- task:
name: Translation deu-est
type: translation
args: deu-est
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-est
metrics:
- name: BLEU
type: bleu
value: 57.8
- name: chr-F
type: chrf
value: 0.76586
- task:
name: Translation deu-fin
type: translation
args: deu-fin
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-fin
metrics:
- name: BLEU
type: bleu
value: 40.7
- name: chr-F
type: chrf
value: 0.64286
- task:
name: Translation deu-hun
type: translation
args: deu-hun
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-hun
metrics:
- name: BLEU
type: bleu
value: 31.2
- name: chr-F
type: chrf
value: 0.57007
- task:
name: Translation eng-est
type: translation
args: eng-est
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-est
metrics:
- name: BLEU
type: bleu
value: 50.6
- name: chr-F
type: chrf
value: 0.69134
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 37.6
- name: chr-F
type: chrf
value: 0.62482
- task:
name: Translation eng-hun
type: translation
args: eng-hun
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-hun
metrics:
- name: BLEU
type: bleu
value: 35.9
- name: chr-F
type: chrf
value: 0.5975
- task:
name: Translation fra-fin
type: translation
args: fra-fin
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-fin
metrics:
- name: BLEU
type: bleu
value: 45
- name: chr-F
type: chrf
value: 0.65723
- task:
name: Translation fra-hun
type: translation
args: fra-hun
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-hun
metrics:
- name: BLEU
type: bleu
value: 40.6
- name: chr-F
type: chrf
value: 0.63096
- task:
name: Translation multi-multi
type: translation
args: multi-multi
dataset:
name: tatoeba-test-v2020-07-28-v2023-09-26
type: tatoeba_mt
args: multi-multi
metrics:
- name: BLEU
type: bleu
value: 32.8
- name: chr-F
type: chrf
value: 0.58505
- task:
name: Translation por-fin
type: translation
args: por-fin
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-fin
metrics:
- name: BLEU
type: bleu
value: 58.1
- name: chr-F
type: chrf
value: 0.76811
- task:
name: Translation por-hun
type: translation
args: por-hun
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-hun
metrics:
- name: BLEU
type: bleu
value: 42.5
- name: chr-F
type: chrf
value: 0.6493
- task:
name: Translation spa-fin
type: translation
args: spa-fin
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-fin
metrics:
- name: BLEU
type: bleu
value: 43.4
- name: chr-F
type: chrf
value: 0.6622
- task:
name: Translation spa-hun
type: translation
args: spa-hun
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-hun
metrics:
- name: BLEU
type: bleu
value: 42
- name: chr-F
type: chrf
value: 0.63596
- task:
name: Translation deu-hun
type: translation
args: deu-hun
dataset:
name: newstest2008
type: wmt-2008-news
args: deu-hun
metrics:
- name: BLEU
type: bleu
value: 17.2
- name: chr-F
type: chrf
value: 0.48855
- task:
name: Translation eng-hun
type: translation
args: eng-hun
dataset:
name: newstest2008
type: wmt-2008-news
args: eng-hun
metrics:
- name: BLEU
type: bleu
value: 15.9
- name: chr-F
type: chrf
value: 0.47636
- task:
name: Translation fra-hun
type: translation
args: fra-hun
dataset:
name: newstest2008
type: wmt-2008-news
args: fra-hun
metrics:
- name: BLEU
type: bleu
value: 17.7
- name: chr-F
type: chrf
value: 0.48598
- task:
name: Translation spa-hun
type: translation
args: spa-hun
dataset:
name: newstest2008
type: wmt-2008-news
args: spa-hun
metrics:
- name: BLEU
type: bleu
value: 17.1
- name: chr-F
type: chrf
value: 0.47888
- task:
name: Translation deu-hun
type: translation
args: deu-hun
dataset:
name: newstest2009
type: wmt-2009-news
args: deu-hun
metrics:
- name: BLEU
type: bleu
value: 18.1
- name: chr-F
type: chrf
value: 0.48692
- task:
name: Translation eng-hun
type: translation
args: eng-hun
dataset:
name: newstest2009
type: wmt-2009-news
args: eng-hun
metrics:
- name: BLEU
type: bleu
value: 18.4
- name: chr-F
type: chrf
value: 0.49507
- task:
name: Translation fra-hun
type: translation
args: fra-hun
dataset:
name: newstest2009
type: wmt-2009-news
args: fra-hun
metrics:
- name: BLEU
type: bleu
value: 18.6
- name: chr-F
type: chrf
value: 0.48961
- task:
name: Translation spa-hun
type: translation
args: spa-hun
dataset:
name: newstest2009
type: wmt-2009-news
args: spa-hun
metrics:
- name: BLEU
type: bleu
value: 18.1
- name: chr-F
type: chrf
value: 0.48496
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2015
type: wmt-2015-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 22.8
- name: chr-F
type: chrf
value: 0.56896
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2016
type: wmt-2016-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 24.3
- name: chr-F
type: chrf
value: 0.57934
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2017
type: wmt-2017-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 26.5
- name: chr-F
type: chrf
value: 0.60204
- task:
name: Translation eng-est
type: translation
args: eng-est
dataset:
name: newstest2018
type: wmt-2018-news
args: eng-est
metrics:
- name: BLEU
type: bleu
value: 23.8
- name: chr-F
type: chrf
value: 0.56276
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2018
type: wmt-2018-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 17.4
- name: chr-F
type: chrf
value: 0.52953
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2019
type: wmt-2019-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 24.2
- name: chr-F
type: chrf
value: 0.55882
opus-mt-tc-bible-big-deu_eng_fra_por_spa-fiu
Table of Contents
- Model Details
- Uses
- Risks, Limitations and Biases
- How to Get Started With the Model
- Training
- Evaluation
- Citation Information
- Acknowledgements
Model Details
Neural machine translation model for translating from unknown (deu+eng+fra+por+spa) to Finno-Ugrian languages (fiu).
This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train. Model Description:
- Developed by: Language Technology Research Group at the University of Helsinki
- Model Type: Translation (transformer-big)
- Release: 2024-05-30
- License: Apache-2.0
- Language(s):
- Source Language(s): deu eng fra por spa
- Target Language(s): chm est fin fkv hun izh koi kom kpv krl liv mdf mrj myv sma sme smn udm vep vot vro
- Valid Target Language Labels: >>chm<< >>est<< >>fin<< >>fit<< >>fkv<< >>fkv_Latn<< >>hun<< >>izh<< >>kca<< >>koi<< >>kom<< >>kpv<< >>krl<< >>liv<< >>liv_Latn<< >>mdf<< >>mns<< >>mrj<< >>myv<< >>olo<< >>sia<< >>sjd<< >>sje<< >>sjk<< >>sjt<< >>sju<< >>sma<< >>sme<< >>smj<< >>smn<< >>sms<< >>udm<< >>vep<< >>vot<< >>vot_Latn<< >>vro<<
- Original Model: opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip
- Resources for more information:
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of >>id<<
(id = valid target language ID), e.g. >>chm<<
Uses
This model can be used for translation and text-to-text generation.
Risks, Limitations and Biases
CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.
Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).
How to Get Started With the Model
A short example code:
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>chm<< Replace this with text in an accepted source language.",
">>vro<< This is the second sentence."
]
model_name = "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-fiu"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
You can also use OPUS-MT models with the transformers pipelines, for example:
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-fiu")
print(pipe(">>chm<< Replace this with text in an accepted source language."))
Training
- Data: opusTCv20230926max50+bt+jhubc (source)
- Pre-processing: SentencePiece (spm32k,spm32k)
- Model Type: transformer-big
- Original MarianNMT Model: opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip
- Training Scripts: GitHub Repo
Evaluation
- Model scores at the OPUS-MT dashboard
- test set translations: opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt
- test set scores: opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt
- benchmark results: benchmark_results.txt
- benchmark output: benchmark_translations.zip
langpair | testset | chr-F | BLEU | #sent | #words |
---|---|---|---|---|---|
deu-est | tatoeba-test-v2021-08-07 | 0.76586 | 57.8 | 244 | 1413 |
deu-fin | tatoeba-test-v2021-08-07 | 0.64286 | 40.7 | 2647 | 15024 |
deu-hun | tatoeba-test-v2021-08-07 | 0.57007 | 31.2 | 15342 | 105152 |
eng-est | tatoeba-test-v2021-08-07 | 0.69134 | 50.6 | 1359 | 7992 |
eng-fin | tatoeba-test-v2021-08-07 | 0.62482 | 37.6 | 10690 | 65122 |
eng-hun | tatoeba-test-v2021-08-07 | 0.59750 | 35.9 | 13037 | 79562 |
fra-fin | tatoeba-test-v2021-08-07 | 0.65723 | 45.0 | 1920 | 9730 |
fra-hun | tatoeba-test-v2021-08-07 | 0.63096 | 40.6 | 2494 | 13753 |
por-fin | tatoeba-test-v2021-08-07 | 0.76811 | 58.1 | 477 | 2379 |
por-hun | tatoeba-test-v2021-08-07 | 0.64930 | 42.5 | 2500 | 14063 |
spa-fin | tatoeba-test-v2021-08-07 | 0.66220 | 43.4 | 2513 | 14131 |
spa-hun | tatoeba-test-v2021-08-07 | 0.63596 | 42.0 | 2500 | 14599 |
eng-fin | flores101-devtest | 0.57265 | 21.9 | 1012 | 18781 |
fra-hun | flores101-devtest | 0.52691 | 21.2 | 1012 | 22183 |
por-fin | flores101-devtest | 0.53772 | 18.6 | 1012 | 18781 |
por-hun | flores101-devtest | 0.53275 | 21.8 | 1012 | 22183 |
spa-est | flores101-devtest | 0.50142 | 15.2 | 1012 | 19788 |
spa-fin | flores101-devtest | 0.50401 | 13.7 | 1012 | 18781 |
deu-est | flores200-devtest | 0.55333 | 21.2 | 1012 | 19788 |
deu-fin | flores200-devtest | 0.54020 | 18.3 | 1012 | 18781 |
deu-hun | flores200-devtest | 0.53579 | 22.0 | 1012 | 22183 |
eng-est | flores200-devtest | 0.59496 | 26.1 | 1012 | 19788 |
eng-fin | flores200-devtest | 0.57811 | 23.1 | 1012 | 18781 |
eng-hun | flores200-devtest | 0.57670 | 26.7 | 1012 | 22183 |
fra-est | flores200-devtest | 0.54442 | 21.2 | 1012 | 19788 |
fra-fin | flores200-devtest | 0.53768 | 18.5 | 1012 | 18781 |
fra-hun | flores200-devtest | 0.52691 | 21.2 | 1012 | 22183 |
por-est | flores200-devtest | 0.48227 | 15.6 | 1012 | 19788 |
por-fin | flores200-devtest | 0.53772 | 18.6 | 1012 | 18781 |
por-hun | flores200-devtest | 0.53275 | 21.8 | 1012 | 22183 |
spa-est | flores200-devtest | 0.50142 | 15.2 | 1012 | 19788 |
spa-fin | flores200-devtest | 0.50401 | 13.7 | 1012 | 18781 |
spa-hun | flores200-devtest | 0.49444 | 16.4 | 1012 | 22183 |
deu-hun | newssyscomb2009 | 0.49607 | 18.1 | 502 | 9733 |
eng-hun | newssyscomb2009 | 0.50580 | 18.3 | 502 | 9733 |
fra-hun | newssyscomb2009 | 0.49415 | 17.8 | 502 | 9733 |
spa-hun | newssyscomb2009 | 0.48559 | 16.9 | 502 | 9733 |
deu-hun | newstest2008 | 0.48855 | 17.2 | 2051 | 41875 |
eng-hun | newstest2008 | 0.47636 | 15.9 | 2051 | 41875 |
fra-hun | newstest2008 | 0.48598 | 17.7 | 2051 | 41875 |
spa-hun | newstest2008 | 0.47888 | 17.1 | 2051 | 41875 |
deu-hun | newstest2009 | 0.48692 | 18.1 | 2525 | 54965 |
eng-hun | newstest2009 | 0.49507 | 18.4 | 2525 | 54965 |
fra-hun | newstest2009 | 0.48961 | 18.6 | 2525 | 54965 |
spa-hun | newstest2009 | 0.48496 | 18.1 | 2525 | 54965 |
eng-fin | newstest2015 | 0.56896 | 22.8 | 1370 | 19735 |
eng-fin | newstest2016 | 0.57934 | 24.3 | 3000 | 47678 |
eng-fin | newstest2017 | 0.60204 | 26.5 | 3002 | 45269 |
eng-est | newstest2018 | 0.56276 | 23.8 | 2000 | 36269 |
eng-fin | newstest2018 | 0.52953 | 17.4 | 3000 | 44836 |
eng-fin | newstest2019 | 0.55882 | 24.2 | 1997 | 38369 |
eng-fin | newstestALL2016 | 0.57934 | 24.3 | 3000 | 47678 |
eng-fin | newstestALL2017 | 0.60204 | 26.5 | 3002 | 45269 |
eng-fin | newstestB2016 | 0.54388 | 19.9 | 3000 | 45766 |
eng-fin | newstestB2017 | 0.56369 | 22.6 | 3002 | 45506 |
deu-est | ntrex128 | 0.51761 | 18.6 | 1997 | 38420 |
deu-fin | ntrex128 | 0.50759 | 15.5 | 1997 | 35701 |
deu-hun | ntrex128 | 0.46171 | 15.6 | 1997 | 44462 |
eng-est | ntrex128 | 0.57099 | 24.4 | 1997 | 38420 |
eng-fin | ntrex128 | 0.53413 | 18.5 | 1997 | 35701 |
eng-hun | ntrex128 | 0.47342 | 16.6 | 1997 | 44462 |
fra-est | ntrex128 | 0.50712 | 17.7 | 1997 | 38420 |
fra-fin | ntrex128 | 0.49215 | 14.2 | 1997 | 35701 |
fra-hun | ntrex128 | 0.44873 | 14.9 | 1997 | 44462 |
por-est | ntrex128 | 0.48098 | 15.1 | 1997 | 38420 |
por-fin | ntrex128 | 0.50875 | 15.0 | 1997 | 35701 |
por-hun | ntrex128 | 0.45817 | 15.5 | 1997 | 44462 |
spa-est | ntrex128 | 0.52158 | 18.5 | 1997 | 38420 |
spa-fin | ntrex128 | 0.50947 | 15.2 | 1997 | 35701 |
spa-hun | ntrex128 | 0.46051 | 16.1 | 1997 | 44462 |
Citation Information
- Publications: Democratizing neural machine translation with OPUS-MT and OPUS-MT – Building open translation services for the World and The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT (Please, cite if you use this model.)
@article{tiedemann2023democratizing,
title={Democratizing neural machine translation with {OPUS-MT}},
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
journal={Language Resources and Evaluation},
number={58},
pages={713--755},
year={2023},
publisher={Springer Nature},
issn={1574-0218},
doi={10.1007/s10579-023-09704-w}
}
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
Acknowledgements
The work is supported by the HPLT project, funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland, and the EuroHPC supercomputer LUMI.
Model conversion info
- transformers version: 4.45.1
- OPUS-MT git hash: 0882077
- port time: Tue Oct 8 09:01:19 EEST 2024
- port machine: LM0-400-22516.local