library_name: transformers
language:
- aai
- ace
- agn
- aia
- akl
- alj
- alp
- amk
- aoz
- apr
- atq
- aui
- ban
- bcl
- bep
- bhz
- bik
- bku
- blz
- bmk
- bnp
- bpr
- bps
- btd
- bth
- bto
- bts
- btx
- bug
- buk
- bvy
- bzh
- ceb
- cgc
- ch
- dad
- dob
- dtp
- dww
- emi
- en
- far
- fil
- fj
- frd
- gfk
- gil
- gor
- haw
- hil
- hla
- hnn
- hot
- hvn
- iba
- id
- ifa
- ifb
- ifk
- ifu
- ify
- ilo
- iry
- itv
- jv
- jvn
- kbm
- khz
- kje
- kne
- kpg
- kqe
- kqf
- kqw
- krj
- kud
- kwf
- kzf
- laa
- law
- lcm
- leu
- lew
- lex
- lid
- ljp
- lnd
- mad
- mak
- mbb
- mbf
- mbt
- mee
- mek
- mg
- mgm
- mh
- mhy
- mi
- mmo
- mmx
- mna
- mnb
- mog
- mox
- mpx
- mqj
- mrw
- ms
- msm
- mta
- mva
- mvp
- mvv
- mwc
- mwv
- myw
- mzz
- na
- nak
- nia
- nij
- niu
- npy
- nsn
- nss
- nwi
- obo
- pag
- pam
- pau
- plw
- pmf
- pmy
- pne
- ppk
- prf
- ptp
- ptu
- pwg
- rai
- rap
- rej
- rro
- rug
- sas
- sbl
- sda
- sgb
- sgz
- sm
- smk
- sml
- snc
- sps
- stn
- su
- swp
- sxn
- tbc
- tbl
- tbo
- tet
- tgo
- tgp
- tkl
- tl
- tlx
- to
- tpa
- tpz
- tte
- tuc
- tvl
- twb
- twu
- txa
- ty
- ubr
- uvl
- viv
- war
- wed
- wuv
- xsb
- xsi
- yml
tags:
- translation
- opus-mt-tc-bible
license: apache-2.0
model-index:
- name: opus-mt-tc-bible-big-poz-en
results:
- task:
name: Translation multi-eng
type: translation
args: multi-eng
dataset:
name: tatoeba-test-v2020-07-28-v2023-09-26
type: tatoeba_mt
args: multi-eng
metrics:
- name: BLEU
type: bleu
value: 30.5
- name: chr-F
type: chrf
value: 0.48821
opus-mt-tc-bible-big-poz-en
Table of Contents
- Model Details
- Uses
- Risks, Limitations and Biases
- How to Get Started With the Model
- Training
- Evaluation
- Citation Information
- Acknowledgements
Model Details
Neural machine translation model for translating from Malayo-Polynesian languages (poz) to English (en).
This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train. Model Description:
- Developed by: Language Technology Research Group at the University of Helsinki
- Model Type: Translation (transformer-big)
- Release: 2024-08-17
- License: Apache-2.0
- Language(s):
- Source Language(s): aai ace agn aia akl alj alp amk aoz apr atq aui ban bcl bep bhz bik bku blz bmk bnp bpr bps btd bth bto bts btx bug buk bvy bzh ceb cgc cha dad dob dtp dww emi far fij fil frd gfk gil gor haw hil hla hnn hot hvn iba ifa ifb ifk ifu ify ilo ind iry itv jak jav jvn kbm khz kje kne kpg kqe kqf kqw krj kud kwf kzf laa law lcm leu lew lex lid ljp lnd mad mah mak max mbb mbf mbt mee mek mgm mhy mlg mmo mmx mna mnb mog mox mpx mqj mri mrw msa msm mta mva mvp mvv mwc mwv myw mzz nak nau nia nij niu npy nsn nss nwi obo pag pam pau plt plw pmf pmy pne ppk prf ptp ptu pwg rai rap rej rro rug sas sbl sda sgb sgz smk sml smo snc sps stn sun swp sxn tah tbc tbl tbo tet tgl tgo tgp tkl tlx tmw ton tpa tpz tte tuc tvl twb twu txa ubr uvl viv war wed wuv xsb xsi yml zlm zsm
- Target Language(s): eng
- Original Model: opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip
- Resources for more information:
Uses
This model can be used for translation and text-to-text generation.
Risks, Limitations and Biases
CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.
Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).
How to Get Started With the Model
A short example code:
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"Dapat sila'y may mga ideyang pangahas.",
"Dia memang seorang pekerja keras."
]
model_name = "pytorch-models/opus-mt-tc-bible-big-poz-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# They should have some ideas.
# He was a hard worker.
You can also use OPUS-MT models with the transformers pipelines, for example:
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-poz-en")
print(pipe("Dapat sila'y may mga ideyang pangahas."))
# expected output: They should have some ideas.
Training
- Data: opusTCv20230926max50+bt+jhubc (source)
- Pre-processing: SentencePiece (spm32k,spm32k)
- Model Type: transformer-big
- Original MarianNMT Model: opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip
- Training Scripts: GitHub Repo
Evaluation
- Model scores at the OPUS-MT dashboard
- test set translations: opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt
- test set scores: opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt
- benchmark results: benchmark_results.txt
- benchmark output: benchmark_translations.zip
langpair | testset | chr-F | BLEU | #sent | #words |
---|---|---|---|---|---|
multi-eng | tatoeba-test-v2020-07-28-v2023-09-26 | 0.48821 | 30.5 | 10000 | 75409 |
Citation Information
- Publications: Democratizing neural machine translation with OPUS-MT and OPUS-MT – Building open translation services for the World and The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT (Please, cite if you use this model.)
@article{tiedemann2023democratizing,
title={Democratizing neural machine translation with {OPUS-MT}},
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
journal={Language Resources and Evaluation},
number={58},
pages={713--755},
year={2023},
publisher={Springer Nature},
issn={1574-0218},
doi={10.1007/s10579-023-09704-w}
}
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
Acknowledgements
The work is supported by the HPLT project, funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland, and the EuroHPC supercomputer LUMI.
Model conversion info
- transformers version: 4.45.1
- OPUS-MT git hash: 0882077
- port time: Tue Oct 8 13:00:57 EEST 2024
- port machine: LM0-400-22516.local