Add multilingual to the language tag

#3
by lbourdois - opened
Files changed (1) hide show
  1. README.md +30 -37
README.md CHANGED
@@ -2,109 +2,102 @@
2
  language:
3
  - en
4
  - fi
 
 
5
  tags:
6
  - translation
7
  - opus-mt-tc
8
- license: cc-by-4.0
9
  model-index:
10
  - name: opus-mt-tc-big-fi-en
11
  results:
12
  - task:
13
- name: Translation fin-eng
14
  type: translation
15
- args: fin-eng
16
  dataset:
17
  name: flores101-devtest
18
  type: flores_101
19
  args: fin eng devtest
20
  metrics:
21
- - name: BLEU
22
- type: bleu
23
  value: 35.4
 
24
  - task:
25
- name: Translation fin-eng
26
  type: translation
27
- args: fin-eng
28
  dataset:
29
  name: newsdev2015
30
  type: newsdev2015
31
  args: fin-eng
32
  metrics:
33
- - name: BLEU
34
- type: bleu
35
  value: 28.6
 
36
  - task:
37
- name: Translation fin-eng
38
  type: translation
39
- args: fin-eng
40
  dataset:
41
  name: tatoeba-test-v2021-08-07
42
  type: tatoeba_mt
43
  args: fin-eng
44
  metrics:
45
- - name: BLEU
46
- type: bleu
47
  value: 57.4
 
48
  - task:
49
- name: Translation fin-eng
50
  type: translation
51
- args: fin-eng
52
  dataset:
53
  name: newstest2015
54
  type: wmt-2015-news
55
  args: fin-eng
56
  metrics:
57
- - name: BLEU
58
- type: bleu
59
  value: 29.9
 
60
  - task:
61
- name: Translation fin-eng
62
  type: translation
63
- args: fin-eng
64
  dataset:
65
  name: newstest2016
66
  type: wmt-2016-news
67
  args: fin-eng
68
  metrics:
69
- - name: BLEU
70
- type: bleu
71
  value: 34.3
 
72
  - task:
73
- name: Translation fin-eng
74
  type: translation
75
- args: fin-eng
76
  dataset:
77
  name: newstest2017
78
  type: wmt-2017-news
79
  args: fin-eng
80
  metrics:
81
- - name: BLEU
82
- type: bleu
83
  value: 37.3
 
84
  - task:
85
- name: Translation fin-eng
86
  type: translation
87
- args: fin-eng
88
  dataset:
89
  name: newstest2018
90
  type: wmt-2018-news
91
  args: fin-eng
92
  metrics:
93
- - name: BLEU
94
- type: bleu
95
  value: 27.1
 
96
  - task:
97
- name: Translation fin-eng
98
  type: translation
99
- args: fin-eng
100
  dataset:
101
  name: newstest2019
102
  type: wmt-2019-news
103
  args: fin-eng
104
  metrics:
105
- - name: BLEU
106
- type: bleu
107
  value: 32.7
 
108
  ---
109
  # opus-mt-tc-big-fi-en
110
 
@@ -112,7 +105,7 @@ Neural machine translation model for translating from Finnish (fi) to English (e
112
 
113
  This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
114
 
115
- * Publications: [OPUS-MT Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
116
 
117
  ```
118
  @inproceedings{tiedemann-thottingal-2020-opus,
@@ -159,7 +152,7 @@ A short example code:
159
  from transformers import MarianMTModel, MarianTokenizer
160
 
161
  src_text = [
162
- "Kolme kolmanteen on kaksikymmentäseitsemän.",
163
  "Heille syntyi poikavauva."
164
  ]
165
 
@@ -177,7 +170,7 @@ You can also use OPUS-MT models with the transformers pipelines, for example:
177
  ```python
178
  from transformers import pipeline
179
  pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-en")
180
- print(pipe("Kolme kolmanteen on kaksikymmentäseitsemän."))
181
  ```
182
 
183
  ## Benchmarks
@@ -202,7 +195,7 @@ print(pipe("Kolme kolmanteen on kaksikymmentäseitsemän."))
202
 
203
  ## Acknowledgements
204
 
205
- The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
206
 
207
  ## Model conversion info
208
 
 
2
  language:
3
  - en
4
  - fi
5
+ - multilingual
6
+ license: cc-by-4.0
7
  tags:
8
  - translation
9
  - opus-mt-tc
 
10
  model-index:
11
  - name: opus-mt-tc-big-fi-en
12
  results:
13
  - task:
 
14
  type: translation
15
+ name: Translation fin-eng
16
  dataset:
17
  name: flores101-devtest
18
  type: flores_101
19
  args: fin eng devtest
20
  metrics:
21
+ - type: bleu
 
22
  value: 35.4
23
+ name: BLEU
24
  - task:
 
25
  type: translation
26
+ name: Translation fin-eng
27
  dataset:
28
  name: newsdev2015
29
  type: newsdev2015
30
  args: fin-eng
31
  metrics:
32
+ - type: bleu
 
33
  value: 28.6
34
+ name: BLEU
35
  - task:
 
36
  type: translation
37
+ name: Translation fin-eng
38
  dataset:
39
  name: tatoeba-test-v2021-08-07
40
  type: tatoeba_mt
41
  args: fin-eng
42
  metrics:
43
+ - type: bleu
 
44
  value: 57.4
45
+ name: BLEU
46
  - task:
 
47
  type: translation
48
+ name: Translation fin-eng
49
  dataset:
50
  name: newstest2015
51
  type: wmt-2015-news
52
  args: fin-eng
53
  metrics:
54
+ - type: bleu
 
55
  value: 29.9
56
+ name: BLEU
57
  - task:
 
58
  type: translation
59
+ name: Translation fin-eng
60
  dataset:
61
  name: newstest2016
62
  type: wmt-2016-news
63
  args: fin-eng
64
  metrics:
65
+ - type: bleu
 
66
  value: 34.3
67
+ name: BLEU
68
  - task:
 
69
  type: translation
70
+ name: Translation fin-eng
71
  dataset:
72
  name: newstest2017
73
  type: wmt-2017-news
74
  args: fin-eng
75
  metrics:
76
+ - type: bleu
 
77
  value: 37.3
78
+ name: BLEU
79
  - task:
 
80
  type: translation
81
+ name: Translation fin-eng
82
  dataset:
83
  name: newstest2018
84
  type: wmt-2018-news
85
  args: fin-eng
86
  metrics:
87
+ - type: bleu
 
88
  value: 27.1
89
+ name: BLEU
90
  - task:
 
91
  type: translation
92
+ name: Translation fin-eng
93
  dataset:
94
  name: newstest2019
95
  type: wmt-2019-news
96
  args: fin-eng
97
  metrics:
98
+ - type: bleu
 
99
  value: 32.7
100
+ name: BLEU
101
  ---
102
  # opus-mt-tc-big-fi-en
103
 
 
105
 
106
  This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
107
 
108
+ * Publications: [OPUS-MT Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
109
 
110
  ```
111
  @inproceedings{tiedemann-thottingal-2020-opus,
 
152
  from transformers import MarianMTModel, MarianTokenizer
153
 
154
  src_text = [
155
+ "Kolme kolmanteen on kaksikymment�seitsem�n.",
156
  "Heille syntyi poikavauva."
157
  ]
158
 
 
170
  ```python
171
  from transformers import pipeline
172
  pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-en")
173
+ print(pipe("Kolme kolmanteen on kaksikymment�seitsem�n."))
174
  ```
175
 
176
  ## Benchmarks
 
195
 
196
  ## Acknowledgements
197
 
198
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
199
 
200
  ## Model conversion info
201