Model Card
#3
by
Ezi
- opened
README.md
CHANGED
@@ -11,87 +11,97 @@ license: apache-2.0
|
|
11 |
|
12 |
### zho-eng
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
|
23 |
-
* download original weights: [opus-2020-07-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip)
|
24 |
-
* test set translations: [opus-2020-07-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt)
|
25 |
-
* test set scores: [opus-2020-07-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.eval.txt)
|
26 |
-
|
27 |
-
## Benchmarks
|
28 |
-
|
29 |
-
| testset | BLEU | chr-F |
|
30 |
-
|-----------------------|-------|-------|
|
31 |
-
| Tatoeba-test.zho.eng | 36.1 | 0.548 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
- source_languages: zho
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
|
45 |
-
- tags: ['translation']
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
50 |
|
51 |
-
-
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
-
|
62 |
-
|
63 |
-
|
|
|
64 |
|
65 |
-
|
66 |
|
67 |
-
- short_pair: zh-en
|
68 |
|
69 |
-
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
74 |
|
75 |
-
|
76 |
|
77 |
-
- src_name: Chinese
|
78 |
|
79 |
-
|
80 |
|
81 |
-
|
|
|
|
|
82 |
|
83 |
-
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
|
89 |
-
|
|
|
90 |
|
91 |
-
|
92 |
|
93 |
-
|
|
|
94 |
|
95 |
-
- port_machine: brutasse
|
96 |
|
97 |
-
- port_time: 2020-08-21-14:41
|
|
|
11 |
|
12 |
### zho-eng
|
13 |
|
14 |
+
## Table of Contents
|
15 |
+
- [Model Details](#model-details)
|
16 |
+
- [Uses](#uses)
|
17 |
+
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
|
18 |
+
- [Training](#training)
|
19 |
+
- [Evaluation](#evaluation)
|
20 |
+
- [Citation Information](#citation-information)
|
21 |
+
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
## Model Details
|
24 |
+
- **Model Description:**
|
25 |
+
- **Developed by:** Language Technology Research Group at the University of Helsinki
|
26 |
+
- **Model Type:** Translation
|
27 |
+
- **Language(s):**
|
28 |
+
- Source Language: Chinese
|
29 |
+
- Target Language: English
|
30 |
+
- **License:** Apache-2.0
|
31 |
+
- **Resources for more information:**
|
32 |
+
- [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
|
33 |
|
|
|
34 |
|
35 |
+
## Uses
|
36 |
|
37 |
+
#### Direct Use
|
38 |
|
39 |
+
This model can be used for translation and text-to-text generation.
|
40 |
|
|
|
41 |
|
42 |
+
## Risks, Limitations and Biases
|
43 |
|
44 |
+
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
|
45 |
|
46 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
47 |
|
48 |
+
Further details about the dataset for this model can be found in the OPUS readme: [zho-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md)
|
49 |
|
50 |
+
## Training
|
51 |
|
52 |
+
#### System Information
|
53 |
+
* helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
|
54 |
+
* transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
|
55 |
+
* port_machine: brutasse
|
56 |
+
* port_time: 2020-08-21-14:41
|
57 |
+
* src_multilingual: False
|
58 |
+
* tgt_multilingual: False
|
59 |
|
60 |
+
#### Training Data
|
61 |
+
##### Preprocessing
|
62 |
+
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
|
63 |
+
* ref_len: 82826.0
|
64 |
+
* dataset: [opus](https://github.com/Helsinki-NLP/Opus-MT)
|
65 |
+
* download original weights: [opus-2020-07-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip)
|
66 |
|
67 |
+
* test set translations: [opus-2020-07-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt)
|
68 |
|
|
|
69 |
|
70 |
+
## Evaluation
|
71 |
|
72 |
+
#### Results
|
73 |
|
74 |
+
* test set scores: [opus-2020-07-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.eval.txt)
|
75 |
|
76 |
+
* brevity_penalty: 0.948
|
77 |
|
|
|
78 |
|
79 |
+
## Benchmarks
|
80 |
|
81 |
+
| testset | BLEU | chr-F |
|
82 |
+
|-----------------------|-------|-------|
|
83 |
+
| Tatoeba-test.zho.eng | 36.1 | 0.548 |
|
84 |
|
85 |
+
## Citation Information
|
86 |
|
87 |
+
```bibtex
|
88 |
+
@InProceedings{TiedemannThottingal:EAMT2020,
|
89 |
+
author = {J{\"o}rg Tiedemann and Santhosh Thottingal},
|
90 |
+
title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld},
|
91 |
+
booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)},
|
92 |
+
year = {2020},
|
93 |
+
address = {Lisbon, Portugal}
|
94 |
+
}
|
95 |
+
```
|
96 |
|
97 |
+
## How to Get Started With the Model
|
98 |
|
99 |
+
```python
|
100 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
101 |
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
|
103 |
|
104 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
|
105 |
+
```
|
106 |
|
|
|
107 |
|
|