See axolotl config
axolotl version: 0.4.1
# Experiment goal: are the representations diverse enough with just annotation on a variety of input texts?
base_model: meta-llama/Meta-Llama-3-8B
# Heralax/bittensor-mistral-pretrained-base-1
#mistralai/Mistral-7B-v0.1
# Heralax/bittensor-mistral-pretrained-base-1
#mistralai/Mistral-7B-v0.1
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: json
data_files: ./essays_annotation_syspromptvaried.jsonl
ds_type: json
type: sharegpt
conversation: chatml
- path: json
data_files: ./tweets_annotation_syspromptvaried.jsonl
ds_type: json
type: sharegpt
conversation: chatml
- path: json
data_files: ./autometa_4_percent.json
ds_type: json
type: sharegpt
conversation: chatml
# - path: json
# data_files: paul_graham_essays_completion.json
# ds_type: json
# type: completion
dataset_prepared_path: last_run_prepared
output_dir: ./paulgraham-finetune-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
shuffle_merged_datasets: true
wandb_project: pg-test
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 6
micro_batch_size: 2
eval_batch_size: 1
num_epochs: 7
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000024
weight_decay: 0
# Gradient clipping max norm
max_grad_norm: 1.0
noisy_embedding_alpha: 0
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_offload_params: false
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
# warmup_steps: 10
warmup_ratio: 0.5
auto_resume_from_checkpoints: false
#warmup_ratio: 0.5
eval_steps: 10
saves_per_epoch: 1
eval_sample_packing: false
save_total_limit: 2
debug:
deepspeed: deepspeed_configs/zero2.json
chat_template: chatml
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
pad_token: "</s>"
paulgraham-finetune-out
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.4e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 6
- total_train_batch_size: 72
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 31
- num_epochs: 7
Training results
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Heralax/llama-3-paulgraham-2-no-special-tokens
Base model
meta-llama/Meta-Llama-3-8B