|
import os |
|
import sys |
|
import gc |
|
import traceback |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
from functools import lru_cache |
|
from time import time as ttime |
|
from torch import Tensor |
|
import faiss |
|
import librosa |
|
import numpy as np |
|
import parselmouth |
|
import pyworld |
|
import torch.nn.functional as F |
|
from scipy import signal |
|
from tqdm import tqdm |
|
|
|
import random |
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
import re |
|
from functools import partial |
|
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) |
|
|
|
input_audio_path2wav = {} |
|
import torchcrepe |
|
from torchfcpe import spawn_bundled_infer_model |
|
import torch |
|
from lib.infer_libs.rmvpe import RMVPE |
|
from lib.infer_libs.fcpe import FCPE |
|
|
|
@lru_cache |
|
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period): |
|
audio = input_audio_path2wav[input_audio_path] |
|
f0, t = pyworld.harvest( |
|
audio, |
|
fs=fs, |
|
f0_ceil=f0max, |
|
f0_floor=f0min, |
|
frame_period=frame_period, |
|
) |
|
f0 = pyworld.stonemask(audio, f0, t, fs) |
|
return f0 |
|
|
|
|
|
def change_rms(data1, sr1, data2, sr2, rate): |
|
|
|
rms1 = librosa.feature.rms( |
|
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2 |
|
) |
|
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2) |
|
rms1 = torch.from_numpy(rms1) |
|
rms1 = F.interpolate( |
|
rms1.unsqueeze(0), size=data2.shape[0], mode="linear" |
|
).squeeze() |
|
rms2 = torch.from_numpy(rms2) |
|
rms2 = F.interpolate( |
|
rms2.unsqueeze(0), size=data2.shape[0], mode="linear" |
|
).squeeze() |
|
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6) |
|
data2 *= ( |
|
torch.pow(rms1, torch.tensor(1 - rate)) |
|
* torch.pow(rms2, torch.tensor(rate - 1)) |
|
).numpy() |
|
return data2 |
|
|
|
|
|
class Pipeline(object): |
|
def __init__(self, tgt_sr, config): |
|
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = ( |
|
config.x_pad, |
|
config.x_query, |
|
config.x_center, |
|
config.x_max, |
|
config.is_half, |
|
) |
|
self.sr = 16000 |
|
self.window = 160 |
|
self.t_pad = self.sr * self.x_pad |
|
self.t_pad_tgt = tgt_sr * self.x_pad |
|
self.t_pad2 = self.t_pad * 2 |
|
self.t_query = self.sr * self.x_query |
|
self.t_center = self.sr * self.x_center |
|
self.t_max = self.sr * self.x_max |
|
self.device = config.device |
|
self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device) |
|
|
|
self.note_dict = [ |
|
65.41, 69.30, 73.42, 77.78, 82.41, 87.31, |
|
92.50, 98.00, 103.83, 110.00, 116.54, 123.47, |
|
130.81, 138.59, 146.83, 155.56, 164.81, 174.61, |
|
185.00, 196.00, 207.65, 220.00, 233.08, 246.94, |
|
261.63, 277.18, 293.66, 311.13, 329.63, 349.23, |
|
369.99, 392.00, 415.30, 440.00, 466.16, 493.88, |
|
523.25, 554.37, 587.33, 622.25, 659.25, 698.46, |
|
739.99, 783.99, 830.61, 880.00, 932.33, 987.77, |
|
1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91, |
|
1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53, |
|
2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83, |
|
2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07 |
|
] |
|
|
|
|
|
def get_optimal_torch_device(self, index: int = 0) -> torch.device: |
|
if torch.cuda.is_available(): |
|
return torch.device( |
|
f"cuda:{index % torch.cuda.device_count()}" |
|
) |
|
elif torch.backends.mps.is_available(): |
|
return torch.device("mps") |
|
return torch.device("cpu") |
|
|
|
|
|
def get_f0_crepe_computation( |
|
self, |
|
x, |
|
f0_min, |
|
f0_max, |
|
p_len, |
|
*args, |
|
**kwargs, |
|
): |
|
x = x.astype( |
|
np.float32 |
|
) |
|
x /= np.quantile(np.abs(x), 0.999) |
|
torch_device = self.get_optimal_torch_device() |
|
audio = torch.from_numpy(x).to(torch_device, copy=True) |
|
audio = torch.unsqueeze(audio, dim=0) |
|
if audio.ndim == 2 and audio.shape[0] > 1: |
|
audio = torch.mean(audio, dim=0, keepdim=True).detach() |
|
audio = audio.detach() |
|
hop_length = kwargs.get('crepe_hop_length', 160) |
|
model = kwargs.get('model', 'full') |
|
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length)) |
|
pitch: Tensor = torchcrepe.predict( |
|
audio, |
|
self.sr, |
|
hop_length, |
|
f0_min, |
|
f0_max, |
|
model, |
|
batch_size=hop_length * 2, |
|
device=torch_device, |
|
pad=True, |
|
) |
|
p_len = p_len or x.shape[0] // hop_length |
|
|
|
source = np.array(pitch.squeeze(0).cpu().float().numpy()) |
|
source[source < 0.001] = np.nan |
|
target = np.interp( |
|
np.arange(0, len(source) * p_len, len(source)) / p_len, |
|
np.arange(0, len(source)), |
|
source, |
|
) |
|
f0 = np.nan_to_num(target) |
|
return f0 |
|
|
|
def get_f0_official_crepe_computation( |
|
self, |
|
x, |
|
f0_min, |
|
f0_max, |
|
*args, |
|
**kwargs |
|
): |
|
|
|
batch_size = 512 |
|
|
|
audio = torch.tensor(np.copy(x))[None].float() |
|
model = kwargs.get('model', 'full') |
|
f0, pd = torchcrepe.predict( |
|
audio, |
|
self.sr, |
|
self.window, |
|
f0_min, |
|
f0_max, |
|
model, |
|
batch_size=batch_size, |
|
device=self.device, |
|
return_periodicity=True, |
|
) |
|
pd = torchcrepe.filter.median(pd, 3) |
|
f0 = torchcrepe.filter.mean(f0, 3) |
|
f0[pd < 0.1] = 0 |
|
f0 = f0[0].cpu().numpy() |
|
return f0 |
|
|
|
|
|
def get_f0_pyin_computation(self, x, f0_min, f0_max): |
|
y, sr = librosa.load(x, sr=self.sr, mono=True) |
|
f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr) |
|
f0 = f0[1:] |
|
return f0 |
|
|
|
def get_rmvpe(self, x, *args, **kwargs): |
|
if not hasattr(self, "model_rmvpe"): |
|
from lib.infer.infer_libs.rmvpe import RMVPE |
|
|
|
logger.info( |
|
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}" |
|
) |
|
self.model_rmvpe = RMVPE( |
|
os.environ["rmvpe_model_path"], |
|
is_half=self.is_half, |
|
device=self.device, |
|
) |
|
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) |
|
|
|
if "privateuseone" in str(self.device): |
|
del self.model_rmvpe.model |
|
del self.model_rmvpe |
|
logger.info("Cleaning ortruntime memory") |
|
|
|
return f0 |
|
|
|
|
|
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs): |
|
if not hasattr(self, "model_rmvpe"): |
|
from lib.infer.infer_libs.rmvpe import RMVPE |
|
|
|
logger.info( |
|
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}" |
|
) |
|
self.model_rmvpe = RMVPE( |
|
os.environ["rmvpe_model_path"], |
|
is_half=self.is_half, |
|
device=self.device, |
|
) |
|
f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max) |
|
if "privateuseone" in str(self.device): |
|
del self.model_rmvpe.model |
|
del self.model_rmvpe |
|
logger.info("Cleaning ortruntime memory") |
|
|
|
return f0 |
|
|
|
def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs): |
|
self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03) |
|
f0 = self.model_fcpe.compute_f0(x, p_len=p_len) |
|
del self.model_fcpe |
|
gc.collect() |
|
return f0 |
|
|
|
def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs): |
|
self.model_torchfcpe = spawn_bundled_infer_model(device=self.device) |
|
f0 = self.model_torchfcpe.infer( |
|
torch.from_numpy(x).float().unsqueeze(0).unsqueeze(-1).to(self.device), |
|
sr=sr, |
|
decoder_mode="local_argmax", |
|
threshold=0.006, |
|
f0_min=f0_min, |
|
f0_max=f0_max, |
|
output_interp_target_length=p_len |
|
) |
|
return f0.squeeze().cpu().numpy() |
|
|
|
def autotune_f0(self, f0): |
|
autotuned_f0 = [] |
|
for freq in f0: |
|
closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)] |
|
autotuned_f0.append(random.choice(closest_notes)) |
|
return np.array(autotuned_f0, np.float64) |
|
|
|
|
|
|
|
def get_f0_hybrid_computation( |
|
self, |
|
methods_str, |
|
input_audio_path, |
|
x, |
|
f0_min, |
|
f0_max, |
|
p_len, |
|
filter_radius, |
|
crepe_hop_length, |
|
time_step, |
|
): |
|
|
|
methods_str = re.search('hybrid\[(.+)\]', methods_str) |
|
if methods_str: |
|
methods = [method.strip() for method in methods_str.group(1).split('+')] |
|
f0_computation_stack = [] |
|
|
|
print("Calculating f0 pitch estimations for methods: %s" % str(methods)) |
|
x = x.astype(np.float32) |
|
x /= np.quantile(np.abs(x), 0.999) |
|
|
|
for method in methods: |
|
f0 = None |
|
if method == "pm": |
|
f0 = ( |
|
parselmouth.Sound(x, self.sr) |
|
.to_pitch_ac( |
|
time_step=time_step / 1000, |
|
voicing_threshold=0.6, |
|
pitch_floor=f0_min, |
|
pitch_ceiling=f0_max, |
|
) |
|
.selected_array["frequency"] |
|
) |
|
pad_size = (p_len - len(f0) + 1) // 2 |
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0: |
|
f0 = np.pad( |
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" |
|
) |
|
elif method == "crepe": |
|
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full") |
|
f0 = f0[1:] |
|
elif method == "crepe-tiny": |
|
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny") |
|
f0 = f0[1:] |
|
elif method == "mangio-crepe": |
|
f0 = self.get_f0_crepe_computation( |
|
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length |
|
) |
|
elif method == "mangio-crepe-tiny": |
|
f0 = self.get_f0_crepe_computation( |
|
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny" |
|
) |
|
elif method == "harvest": |
|
input_audio_path2wav[input_audio_path] = x.astype(np.double) |
|
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10) |
|
if filter_radius > 2: |
|
f0 = signal.medfilt(f0, 3) |
|
elif method == "dio": |
|
f0, t = pyworld.dio( |
|
x.astype(np.double), |
|
fs=self.sr, |
|
f0_ceil=f0_max, |
|
f0_floor=f0_min, |
|
frame_period=10, |
|
) |
|
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) |
|
f0 = signal.medfilt(f0, 3) |
|
f0 = f0[1:] |
|
elif method == "rmvpe": |
|
f0 = self.get_rmvpe(x) |
|
f0 = f0[1:] |
|
elif method == "fcpe_legacy": |
|
f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len) |
|
elif method == "fcpe": |
|
f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len) |
|
elif method == "pyin": |
|
f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max) |
|
|
|
f0_computation_stack.append(f0) |
|
|
|
for fc in f0_computation_stack: |
|
print(len(fc)) |
|
|
|
print("Calculating hybrid median f0 from the stack of: %s" % str(methods)) |
|
f0_median_hybrid = None |
|
if len(f0_computation_stack) == 1: |
|
f0_median_hybrid = f0_computation_stack[0] |
|
else: |
|
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0) |
|
return f0_median_hybrid |
|
|
|
def get_f0( |
|
self, |
|
input_audio_path, |
|
x, |
|
p_len, |
|
f0_up_key, |
|
f0_method, |
|
filter_radius, |
|
crepe_hop_length, |
|
f0_autotune, |
|
inp_f0=None, |
|
f0_min=50, |
|
f0_max=1100, |
|
): |
|
global input_audio_path2wav |
|
time_step = self.window / self.sr * 1000 |
|
f0_min = f0_min |
|
f0_max = f0_max |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
if f0_method == "pm": |
|
f0 = ( |
|
parselmouth.Sound(x, self.sr) |
|
.to_pitch_ac( |
|
time_step=time_step / 1000, |
|
voicing_threshold=0.6, |
|
pitch_floor=f0_min, |
|
pitch_ceiling=f0_max, |
|
) |
|
.selected_array["frequency"] |
|
) |
|
pad_size = (p_len - len(f0) + 1) // 2 |
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0: |
|
f0 = np.pad( |
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" |
|
) |
|
elif f0_method == "harvest": |
|
input_audio_path2wav[input_audio_path] = x.astype(np.double) |
|
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10) |
|
if filter_radius > 2: |
|
f0 = signal.medfilt(f0, 3) |
|
elif f0_method == "dio": |
|
f0, t = pyworld.dio( |
|
x.astype(np.double), |
|
fs=self.sr, |
|
f0_ceil=f0_max, |
|
f0_floor=f0_min, |
|
frame_period=10, |
|
) |
|
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) |
|
f0 = signal.medfilt(f0, 3) |
|
elif f0_method == "crepe": |
|
model = "full" |
|
|
|
batch_size = 512 |
|
|
|
audio = torch.tensor(np.copy(x))[None].float() |
|
f0, pd = torchcrepe.predict( |
|
audio, |
|
self.sr, |
|
self.window, |
|
f0_min, |
|
f0_max, |
|
model, |
|
batch_size=batch_size, |
|
device=self.device, |
|
return_periodicity=True, |
|
) |
|
pd = torchcrepe.filter.median(pd, 3) |
|
f0 = torchcrepe.filter.mean(f0, 3) |
|
f0[pd < 0.1] = 0 |
|
f0 = f0[0].cpu().numpy() |
|
elif f0_method == "crepe-tiny": |
|
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny") |
|
elif f0_method == "mangio-crepe": |
|
f0 = self.get_f0_crepe_computation( |
|
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length |
|
) |
|
elif f0_method == "mangio-crepe-tiny": |
|
f0 = self.get_f0_crepe_computation( |
|
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny" |
|
) |
|
elif f0_method == "rmvpe": |
|
if not hasattr(self, "model_rmvpe"): |
|
from lib.infer.infer_libs.rmvpe import RMVPE |
|
|
|
logger.info( |
|
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}" |
|
) |
|
self.model_rmvpe = RMVPE( |
|
os.environ["rmvpe_model_path"], |
|
is_half=self.is_half, |
|
device=self.device, |
|
) |
|
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) |
|
|
|
if "privateuseone" in str(self.device): |
|
del self.model_rmvpe.model |
|
del self.model_rmvpe |
|
logger.info("Cleaning ortruntime memory") |
|
elif f0_method == "rmvpe_legacy": |
|
params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min, |
|
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius, |
|
'crepe_hop_length': crepe_hop_length, 'model': "full" |
|
} |
|
f0 = self.get_pitch_dependant_rmvpe(**params) |
|
elif f0_method == "pyin": |
|
f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max) |
|
elif f0_method == "fcpe_legacy": |
|
f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len) |
|
elif f0_method == "fcpe": |
|
f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len) |
|
elif "hybrid" in f0_method: |
|
|
|
input_audio_path2wav[input_audio_path] = x.astype(np.double) |
|
f0 = self.get_f0_hybrid_computation( |
|
f0_method, |
|
input_audio_path, |
|
x, |
|
f0_min, |
|
f0_max, |
|
p_len, |
|
filter_radius, |
|
crepe_hop_length, |
|
time_step, |
|
) |
|
|
|
if f0_autotune == True: |
|
print("Autotune:", f0_autotune) |
|
f0 = self.autotune_f0(f0) |
|
|
|
f0 *= pow(2, f0_up_key / 12) |
|
|
|
tf0 = self.sr // self.window |
|
if inp_f0 is not None: |
|
delta_t = np.round( |
|
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 |
|
).astype("int16") |
|
replace_f0 = np.interp( |
|
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] |
|
) |
|
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0] |
|
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[ |
|
:shape |
|
] |
|
|
|
f0bak = f0.copy() |
|
f0_mel = 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( |
|
f0_mel_max - f0_mel_min |
|
) + 1 |
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > 255] = 255 |
|
f0_coarse = np.rint(f0_mel).astype(np.int32) |
|
return f0_coarse, f0bak |
|
|
|
def vc( |
|
self, |
|
model, |
|
net_g, |
|
sid, |
|
audio0, |
|
pitch, |
|
pitchf, |
|
times, |
|
index, |
|
big_npy, |
|
index_rate, |
|
version, |
|
protect, |
|
): |
|
feats = torch.from_numpy(audio0) |
|
if self.is_half: |
|
feats = feats.half() |
|
else: |
|
feats = feats.float() |
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
assert feats.dim() == 1, feats.dim() |
|
feats = feats.view(1, -1) |
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) |
|
|
|
inputs = { |
|
"source": feats.to(self.device), |
|
"padding_mask": padding_mask, |
|
"output_layer": 9 if version == "v1" else 12, |
|
} |
|
t0 = ttime() |
|
with torch.no_grad(): |
|
logits = model.extract_features(**inputs) |
|
feats = model.final_proj(logits[0]) if version == "v1" else logits[0] |
|
if protect < 0.5 and pitch is not None and pitchf is not None: |
|
feats0 = feats.clone() |
|
if ( |
|
not isinstance(index, type(None)) |
|
and not isinstance(big_npy, type(None)) |
|
and index_rate != 0 |
|
): |
|
npy = feats[0].cpu().numpy() |
|
if self.is_half: |
|
npy = npy.astype("float32") |
|
|
|
|
|
|
|
|
|
score, ix = index.search(npy, k=8) |
|
weight = np.square(1 / score) |
|
weight /= weight.sum(axis=1, keepdims=True) |
|
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) |
|
|
|
if self.is_half: |
|
npy = npy.astype("float16") |
|
feats = ( |
|
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate |
|
+ (1 - index_rate) * feats |
|
) |
|
|
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) |
|
if protect < 0.5 and pitch is not None and pitchf is not None: |
|
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute( |
|
0, 2, 1 |
|
) |
|
t1 = ttime() |
|
p_len = audio0.shape[0] // self.window |
|
if feats.shape[1] < p_len: |
|
p_len = feats.shape[1] |
|
if pitch is not None and pitchf is not None: |
|
pitch = pitch[:, :p_len] |
|
pitchf = pitchf[:, :p_len] |
|
|
|
if protect < 0.5 and pitch is not None and pitchf is not None: |
|
pitchff = pitchf.clone() |
|
pitchff[pitchf > 0] = 1 |
|
pitchff[pitchf < 1] = protect |
|
pitchff = pitchff.unsqueeze(-1) |
|
feats = feats * pitchff + feats0 * (1 - pitchff) |
|
feats = feats.to(feats0.dtype) |
|
p_len = torch.tensor([p_len], device=self.device).long() |
|
with torch.no_grad(): |
|
hasp = pitch is not None and pitchf is not None |
|
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid) |
|
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy() |
|
del hasp, arg |
|
del feats, p_len, padding_mask |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
t2 = ttime() |
|
times[0] += t1 - t0 |
|
times[2] += t2 - t1 |
|
return audio1 |
|
def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g): |
|
t = t // window * window |
|
if if_f0 == 1: |
|
return self.vc( |
|
model, |
|
net_g, |
|
sid, |
|
audio_pad[s : t + t_pad_tgt + window], |
|
pitch[:, s // window : (t + t_pad_tgt) // window], |
|
pitchf[:, s // window : (t + t_pad_tgt) // window], |
|
times, |
|
index, |
|
big_npy, |
|
index_rate, |
|
version, |
|
protect, |
|
)[t_pad_tgt : -t_pad_tgt] |
|
else: |
|
return self.vc( |
|
model, |
|
net_g, |
|
sid, |
|
audio_pad[s : t + t_pad_tgt + window], |
|
None, |
|
None, |
|
times, |
|
index, |
|
big_npy, |
|
index_rate, |
|
version, |
|
protect, |
|
)[t_pad_tgt : -t_pad_tgt] |
|
|
|
|
|
def pipeline( |
|
self, |
|
model, |
|
net_g, |
|
sid, |
|
audio, |
|
input_audio_path, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
protect, |
|
crepe_hop_length, |
|
f0_autotune, |
|
f0_min=50, |
|
f0_max=1100 |
|
): |
|
if ( |
|
file_index != "" |
|
and isinstance(file_index, str) |
|
|
|
|
|
and os.path.exists(file_index) |
|
and index_rate != 0 |
|
): |
|
try: |
|
index = faiss.read_index(file_index) |
|
|
|
big_npy = index.reconstruct_n(0, index.ntotal) |
|
except: |
|
traceback.print_exc() |
|
index = big_npy = None |
|
else: |
|
index = big_npy = None |
|
audio = signal.filtfilt(bh, ah, audio) |
|
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") |
|
opt_ts = [] |
|
if audio_pad.shape[0] > self.t_max: |
|
audio_sum = np.zeros_like(audio) |
|
for i in range(self.window): |
|
audio_sum += audio_pad[i : i - self.window] |
|
for t in range(self.t_center, audio.shape[0], self.t_center): |
|
opt_ts.append( |
|
t |
|
- self.t_query |
|
+ np.where( |
|
np.abs(audio_sum[t - self.t_query : t + self.t_query]) |
|
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() |
|
)[0][0] |
|
) |
|
s = 0 |
|
audio_opt = [] |
|
t = None |
|
t1 = ttime() |
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") |
|
p_len = audio_pad.shape[0] // self.window |
|
inp_f0 = None |
|
|
|
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() |
|
pitch, pitchf = None, None |
|
if if_f0: |
|
pitch, pitchf = self.get_f0( |
|
input_audio_path, |
|
audio_pad, |
|
p_len, |
|
f0_up_key, |
|
f0_method, |
|
filter_radius, |
|
crepe_hop_length, |
|
f0_autotune, |
|
inp_f0, |
|
f0_min, |
|
f0_max |
|
) |
|
pitch = pitch[:p_len] |
|
pitchf = pitchf[:p_len] |
|
if "mps" not in str(self.device) or "xpu" not in str(self.device): |
|
pitchf = pitchf.astype(np.float32) |
|
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() |
|
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() |
|
t2 = ttime() |
|
times[1] += t2 - t1 |
|
|
|
with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar: |
|
for i, t in enumerate(opt_ts): |
|
t = t // self.window * self.window |
|
start = s |
|
end = t + self.t_pad2 + self.window |
|
audio_slice = audio_pad[start:end] |
|
pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None |
|
pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None |
|
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt]) |
|
s = t |
|
pbar.update(1) |
|
pbar.refresh() |
|
|
|
audio_slice = audio_pad[t:] |
|
pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch |
|
pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf |
|
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt]) |
|
|
|
audio_opt = np.concatenate(audio_opt) |
|
if rms_mix_rate != 1: |
|
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate) |
|
if tgt_sr != resample_sr >= 16000: |
|
audio_opt = librosa.resample( |
|
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr |
|
) |
|
audio_max = np.abs(audio_opt).max() / 0.99 |
|
max_int16 = 32768 |
|
if audio_max > 1: |
|
max_int16 /= audio_max |
|
audio_opt = (audio_opt * max_int16).astype(np.int16) |
|
del pitch, pitchf, sid |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
print("Returning completed audio...") |
|
return audio_opt |