Model Description

This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Hiroaki Hara(@Himalayan-wildcat)
  • Language(s) (NLP): ja
  • License: MIT
  • Finetuned from model: Himalayan-wildcat/gemma-2-9b-finetune
  • Datasets: DeL-TaiseiOzaki/Tengentoppa-sft-v1.0

Uses

pip install peft~=0.14 tqdm~=4.67 transformers~=4.47
import json
import re

import torch
from peft import PeftModel
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)


model_id = "Himalayan-wildcat/gemma-2-9b-finetune"
hf_token = "/YOUR_HUGGING_FACE_TOKEN/"
test_jsonl_data = "elyza-tasks-100-TV_0.jsonl"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=bnb_config,
    device_map="auto",
    token = hf_token)

tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    trust_remote_code=True,
    token=hf_token)

datasets = []
with open(test_jsonl_data) as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

results = []
for data in tqdm(datasets):
    input_: str = data["input"]

    prompt = f"""
[要仢]
- δΈŽγˆγ‚‰γ‚ŒγŸθ³ͺε•γ¨εŒγ˜θ¨€θͺžγ§ε›žη­”をしてください。
- ε›žη­”γŒεˆ†γ‹γ‚‰γͺγ„ε ΄εˆγ―γ€θ™šε½γ‚’γ›γšγ€γ€Œεˆ†γ‹γ‚ŠγΎγ›γ‚“γ€‚γ€γ¨ε›žη­”γ‚’γ—γ¦γγ γ•γ„γ€‚

[θ³ͺ問]
{input_}

[ε›žη­”]"""

    tokenized_input = tokenizer(prompt, return_tensors="pt").to("cuda")
    
    with torch.no_grad():
        generated_ids = model.generate(
            tokenized_input.input_ids,            
            attention_mask=tokenized_input.attention_mask,
            max_new_tokens=500,
            do_sample=False,
            repetition_penalty=1.2,
            pad_token_id=tokenizer.eos_token_id)

    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_input.input_ids, generated_ids)
    ]
    output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    results.append({"task_id": data["task_id"], "input": input_, "output": output})

jsonl_id = re.sub(".*/", "", model_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Himalayan-wildcat/gemma-2-9b-finetune

Base model

google/gemma-2-9b
Finetuned
(226)
this model

Dataset used to train Himalayan-wildcat/gemma-2-9b-finetune