metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Base EN
results: []
Whisper Base EN
This model is a fine-tuned version of openai/whisper-medium.en on the ADLINK dataset. It achieves the following results on the evaluation set:
- Loss: 0.0003
- Wer: 1.5152
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.0495 | 25.0 | 100 | 1.0270 | 2.1212 |
0.3802 | 50.0 | 200 | 0.3923 | 1.8182 |
0.0205 | 75.0 | 300 | 0.0130 | 1.8182 |
0.0012 | 100.0 | 400 | 0.0012 | 0.9091 |
0.0006 | 125.0 | 500 | 0.0006 | 0.9091 |
0.0004 | 150.0 | 600 | 0.0004 | 0.9091 |
0.0003 | 175.0 | 700 | 0.0003 | 0.9091 |
0.0003 | 200.0 | 800 | 0.0003 | 2.1212 |
0.0003 | 225.0 | 900 | 0.0003 | 2.1212 |
0.0003 | 250.0 | 1000 | 0.0003 | 1.5152 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.19.2
- Tokenizers 0.19.1