whisper-small-hi / README.md
Hiro-nguyen's picture
End of training
9a74a44 verified
|
raw
history blame
2.02 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper Base EN
    results: []

Whisper Base EN

This model is a fine-tuned version of openai/whisper-medium.en on the ADLINK dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0003
  • Wer: 1.5152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0495 25.0 100 1.0270 2.1212
0.3802 50.0 200 0.3923 1.8182
0.0205 75.0 300 0.0130 1.8182
0.0012 100.0 400 0.0012 0.9091
0.0006 125.0 500 0.0006 0.9091
0.0004 150.0 600 0.0004 0.9091
0.0003 175.0 700 0.0003 0.9091
0.0003 200.0 800 0.0003 2.1212
0.0003 225.0 900 0.0003 2.1212
0.0003 250.0 1000 0.0003 1.5152

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0a0+ebedce2
  • Datasets 2.19.2
  • Tokenizers 0.19.1