|
--- |
|
language: |
|
- en |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
base_model: openai/whisper-medium.en |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Base EN |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Base EN |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the ADLINK dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0017 |
|
- Wer: 1.3384 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:-------:| |
|
| 2.7899 | 4.1667 | 100 | 2.3530 | 21.4149 | |
|
| 0.8377 | 8.3333 | 200 | 0.7500 | 4.2065 | |
|
| 0.0599 | 12.5 | 300 | 0.0394 | 1.9120 | |
|
| 0.0163 | 16.6667 | 400 | 0.0151 | 2.1033 | |
|
| 0.0068 | 20.8333 | 500 | 0.0023 | 1.1472 | |
|
| 0.0031 | 25.0 | 600 | 0.0018 | 1.3384 | |
|
| 0.0027 | 29.1667 | 700 | 0.0023 | 1.3384 | |
|
| 0.0018 | 33.3333 | 800 | 0.0020 | 1.3384 | |
|
| 0.003 | 37.5 | 900 | 0.0017 | 1.3384 | |
|
| 0.0009 | 41.6667 | 1000 | 0.0017 | 1.3384 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0a0+ebedce2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|