Uploaded model

  • Developed by: [Hizaneko]
  • License: [apache-2.0]
  • Finetuned from model: [google/gemma-2-9b]

Hugging Faceにアップロードしたモデルを用いてELYZA-tasks-100-TVの出力を得るためのコードです。

Uses

%%capture !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft

from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re

from google.colab import userdata HF_TOKEN=userdata.get('HF_TOKEN')

ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。

HFからモデルリポジトリをダウンロード

!huggingface-cli login --token $HF_TOKEN !huggingface-cli download google/gemma-2-9b --local-dir gemma-2-9b/ model_id = "./gemma-2-9b" adapter_id = "Hizaneko/gemma-2-9b-nyan100"

unslothのFastLanguageModelで元のモデルをロード。

dtype = None load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, )

元のモデルにLoRAのアダプタを統合。

model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

事前にデータをアップロードしてください。

datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""

推論するためにモデルのモードを変更

FastLanguageModel.for_inference(model)

results = [] for dt in tqdm(datasets): input = dt["input"]

prompt = f"""### 指示\n{input} 簡潔に回答してください \n### 回答\n"""

inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

結果をjsonlで保存。

json_file_id = re.sub(".*/", "", adapter_id) with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n')

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Hizaneko/gemma-2-9b-nyan100

Base model

google/gemma-2-9b
Finetuned
(228)
this model

Dataset used to train Hizaneko/gemma-2-9b-nyan100