Update README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,13 @@
|
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
- unsloth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
# Model Card for Model ID
|
@@ -13,18 +20,19 @@ tags:
|
|
13 |
## Model Details
|
14 |
|
15 |
### Model Description
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
20 |
|
21 |
-
- **Developed by:** [
|
22 |
- **Funded by [optional]:** [More Information Needed]
|
23 |
- **Shared by [optional]:** [More Information Needed]
|
24 |
-
- **Model type:** [
|
25 |
-
- **Language(s) (NLP):** [
|
26 |
-
- **License:** [
|
27 |
-
- **Finetuned from model [optional]:** [
|
28 |
|
29 |
### Model Sources [optional]
|
30 |
|
@@ -36,6 +44,217 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
36 |
|
37 |
## Uses
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
40 |
|
41 |
### Direct Use
|
@@ -77,8 +296,9 @@ Use the code below to get started with the model.
|
|
77 |
## Training Details
|
78 |
|
79 |
### Training Data
|
|
|
|
|
80 |
|
81 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
82 |
|
83 |
[More Information Needed]
|
84 |
|
@@ -92,6 +312,14 @@ Use the code below to get started with the model.
|
|
92 |
|
93 |
|
94 |
#### Training Hyperparameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
97 |
|
@@ -145,8 +373,8 @@ Use the code below to get started with the model.
|
|
145 |
|
146 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
|
148 |
-
- **Hardware Type:** [
|
149 |
-
- **Hours used:** [
|
150 |
- **Cloud Provider:** [More Information Needed]
|
151 |
- **Compute Region:** [More Information Needed]
|
152 |
- **Carbon Emitted:** [More Information Needed]
|
|
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
- unsloth
|
5 |
+
license: apache-2.0
|
6 |
+
datasets:
|
7 |
+
- llm-jp/magpie-sft-v1.0
|
8 |
+
language:
|
9 |
+
- ja
|
10 |
+
base_model:
|
11 |
+
- google/gemma-2-9b
|
12 |
---
|
13 |
|
14 |
# Model Card for Model ID
|
|
|
20 |
## Model Details
|
21 |
|
22 |
### Model Description
|
23 |
+
gemma-2-9b-nyan100
|
24 |
|
25 |
+
gemma-2-9b-nyan100 は、Google の Gemma-2-9b を基に、日本語の指示追従タスクに特化して微調整されたモデルです。本モデルは、特に日本語での指示応答や対話生成、文書要約などのタスクに優れた性能を発揮します。
|
26 |
|
27 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
28 |
|
29 |
+
- **Developed by:** [Hizaneko]
|
30 |
- **Funded by [optional]:** [More Information Needed]
|
31 |
- **Shared by [optional]:** [More Information Needed]
|
32 |
+
- **Model type:** [指示追従型大規模言語モデル (Instruction-Following LLM)]
|
33 |
+
- **Language(s) (NLP):** [日本語]
|
34 |
+
- **License:** [Gemma 利用規約 に従う]
|
35 |
+
- **Finetuned from model [optional]:** [google/gemma-2-9b]
|
36 |
|
37 |
### Model Sources [optional]
|
38 |
|
|
|
44 |
|
45 |
## Uses
|
46 |
|
47 |
+
!pip uninstall unsloth -y
|
48 |
+
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
49 |
+
|
50 |
+
# Google Colab のデフォルトで入っているパッケージをアップグレード(Moriyasu さんありがとうございます)
|
51 |
+
!pip install --upgrade torch
|
52 |
+
!pip install --upgrade xformers
|
53 |
+
|
54 |
+
# notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり)
|
55 |
+
# Google Colabでは実行不要
|
56 |
+
!pip install ipywidgets --upgrade
|
57 |
+
|
58 |
+
# Install Flash Attention 2 for softcapping support
|
59 |
+
import torch
|
60 |
+
if torch.cuda.get_device_capability()[0] >= 8:
|
61 |
+
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
|
62 |
+
|
63 |
+
# Hugging Face Token を指定
|
64 |
+
#HF_TOKEN = "" #@param {type:"string"}
|
65 |
+
|
66 |
+
# あるいはGoogle Colab シークレットを使う場合、左のサイドバーより🔑マークをクリック
|
67 |
+
# HF_TOKEN という名前で Value に Hugging Face Token を入れてください。
|
68 |
+
# ノートブックからのアクセスのトグルをオンにし、下記の二行のコードのコメントアウトを外してください。
|
69 |
+
from google.colab import userdata
|
70 |
+
HF_TOKEN=userdata.get('HF_TOKEN')
|
71 |
+
|
72 |
+
# google/gemma-2-9bを4bit量子化のqLoRA設定でロード。
|
73 |
+
|
74 |
+
from unsloth import FastLanguageModel
|
75 |
+
import torch
|
76 |
+
#max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
|
77 |
+
max_seq_length = 1024
|
78 |
+
dtype = None # Noneにしておけば自動で設定
|
79 |
+
load_in_4bit = True # 今回は9Bモデルを扱うためTrue
|
80 |
+
|
81 |
+
# HFからモデルリポジトリをダウンロード
|
82 |
+
!huggingface-cli login --token $HF_TOKEN
|
83 |
+
!huggingface-cli download google/gemma-2-9b --local-dir gemma-2-9b/
|
84 |
+
model_id = "./gemma-2-9b"
|
85 |
+
new_model_id = "gemma-2-9b-nyan100" #Fine-Tuningしたモデルにつけたい名前
|
86 |
+
# FastLanguageModel インスタンスを作成
|
87 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
88 |
+
model_name=model_id,
|
89 |
+
dtype=dtype,
|
90 |
+
load_in_4bit=load_in_4bit,
|
91 |
+
trust_remote_code=True,
|
92 |
+
)
|
93 |
+
|
94 |
+
# SFT用のモデルを用意
|
95 |
+
model = FastLanguageModel.get_peft_model(
|
96 |
+
model,
|
97 |
+
r = 32,
|
98 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
99 |
+
"gate_proj", "up_proj", "down_proj",],
|
100 |
+
lora_alpha = 32,
|
101 |
+
lora_dropout = 0.05,
|
102 |
+
#lora_dropout = 0.1,
|
103 |
+
bias = "none",
|
104 |
+
use_gradient_checkpointing = "unsloth",
|
105 |
+
random_state = 3407,
|
106 |
+
use_rslora = False,
|
107 |
+
loftq_config = None,
|
108 |
+
max_seq_length = max_seq_length,
|
109 |
+
)
|
110 |
+
|
111 |
+
from datasets import load_dataset
|
112 |
+
|
113 |
+
# データセットのロード
|
114 |
+
dataset_name = "llm-jp/magpie-sft-v1.0"
|
115 |
+
dataset = load_dataset(dataset_name)
|
116 |
+
|
117 |
+
# データセットの10分の1を使用(train split前提)
|
118 |
+
train_length = len(dataset["train"])
|
119 |
+
#dataset["train"] = dataset["train"].select(range(train_length // 10))
|
120 |
+
dataset["train"] = dataset["train"].select(range(train_length // 100))
|
121 |
+
|
122 |
+
# フォーマット整形関数の定義
|
123 |
+
def format_dataset(examples):
|
124 |
+
conversations = examples["conversations"] # conversationsカラムを取得
|
125 |
+
user_inputs = []
|
126 |
+
assistant_outputs = []
|
127 |
+
|
128 |
+
for turn in conversations:
|
129 |
+
if turn["role"] == "user":
|
130 |
+
user_inputs.append(turn["content"])
|
131 |
+
elif turn["role"] == "assistant":
|
132 |
+
assistant_outputs.append(turn["content"])
|
133 |
+
|
134 |
+
input_text = " ".join(user_inputs) # ユーザー発話を結合
|
135 |
+
output_text = " ".join(assistant_outputs) # アシスタント発話を��合
|
136 |
+
|
137 |
+
return {
|
138 |
+
"text": input_text, # 入力部分
|
139 |
+
"output": output_text # 出力部分
|
140 |
+
}
|
141 |
+
|
142 |
+
# データセットを整形
|
143 |
+
formatted_dataset = dataset.map(
|
144 |
+
format_dataset,
|
145 |
+
num_proc=4,
|
146 |
+
remove_columns=["conversations"]
|
147 |
+
)
|
148 |
+
|
149 |
+
# 結果の表示
|
150 |
+
print(formatted_dataset)
|
151 |
+
|
152 |
+
# プロンプトフォーマットの定義
|
153 |
+
prompt = """### 指示
|
154 |
+
{}
|
155 |
+
### 回答
|
156 |
+
{}"""
|
157 |
+
|
158 |
+
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン
|
159 |
+
|
160 |
+
# プロンプト生成関数
|
161 |
+
def formatting_prompts_func(examples):
|
162 |
+
input_text = examples["text"]
|
163 |
+
output_text = examples["output"]
|
164 |
+
formatted_text = prompt.format(input_text, output_text) + EOS_TOKEN
|
165 |
+
return {"formatted_text": formatted_text}
|
166 |
+
|
167 |
+
# プロンプト適用
|
168 |
+
final_dataset = formatted_dataset.map(
|
169 |
+
formatting_prompts_func,
|
170 |
+
num_proc=4
|
171 |
+
)
|
172 |
+
|
173 |
+
from trl import SFTTrainer
|
174 |
+
from transformers import TrainingArguments
|
175 |
+
from unsloth import is_bfloat16_supported
|
176 |
+
|
177 |
+
trainer = SFTTrainer(
|
178 |
+
model = model,
|
179 |
+
tokenizer = tokenizer,
|
180 |
+
train_dataset=final_dataset["train"],
|
181 |
+
max_seq_length = max_seq_length,
|
182 |
+
dataset_text_field="formatted_text",
|
183 |
+
packing = False,
|
184 |
+
args = TrainingArguments(
|
185 |
+
per_device_train_batch_size = 2,
|
186 |
+
gradient_accumulation_steps = 4,
|
187 |
+
num_train_epochs = 1,
|
188 |
+
logging_steps = 10,
|
189 |
+
warmup_steps = 10,
|
190 |
+
save_steps=100,
|
191 |
+
save_total_limit=2,
|
192 |
+
max_steps=-1,
|
193 |
+
learning_rate = 2e-4,
|
194 |
+
#learning_rate = 1e-4,
|
195 |
+
fp16 = not is_bfloat16_supported(),
|
196 |
+
bf16 = is_bfloat16_supported(),
|
197 |
+
group_by_length=True,
|
198 |
+
seed = 3407,
|
199 |
+
output_dir = "outputs",
|
200 |
+
report_to = "none",
|
201 |
+
),
|
202 |
+
)
|
203 |
+
|
204 |
+
trainer_stats = trainer.train()
|
205 |
+
|
206 |
+
# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
|
207 |
+
# データセットの読み込み。
|
208 |
+
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
|
209 |
+
import json
|
210 |
+
datasets = []
|
211 |
+
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
|
212 |
+
item = ""
|
213 |
+
for line in f:
|
214 |
+
line = line.strip()
|
215 |
+
item += line
|
216 |
+
if item.endswith("}"):
|
217 |
+
datasets.append(json.loads(item))
|
218 |
+
item = ""
|
219 |
+
|
220 |
+
# 学習したモデルを用いてタスクを実行
|
221 |
+
from tqdm import tqdm
|
222 |
+
|
223 |
+
# 推論するためにモデルのモードを変更
|
224 |
+
FastLanguageModel.for_inference(model)
|
225 |
+
|
226 |
+
results = []
|
227 |
+
for dt in tqdm(datasets):
|
228 |
+
input = dt["input"]
|
229 |
+
|
230 |
+
#prompt = f"""### 指示\n{input}\n### 回答\n"""
|
231 |
+
prompt = f"""### 指示\n{input} 簡潔に回答してください \n### 回答\n"""
|
232 |
+
|
233 |
+
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
|
234 |
+
|
235 |
+
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
|
236 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
|
237 |
+
|
238 |
+
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
|
239 |
+
|
240 |
+
# jsonlで保存
|
241 |
+
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
|
242 |
+
for result in results:
|
243 |
+
json.dump(result, f, ensure_ascii=False)
|
244 |
+
f.write('\n')
|
245 |
+
|
246 |
+
#モデルとトークナイザーをHugging Faceにアップロード。
|
247 |
+
# 一旦privateでアップロードしてください。
|
248 |
+
# 最終成果物が決まったらpublicにするようお願いします。
|
249 |
+
# 現在公開しているModel_Inference_Template.ipynbはunslothを想定していないためそのままでは動かない可能性があります。
|
250 |
+
model.push_to_hub_merged(
|
251 |
+
new_model_id,
|
252 |
+
tokenizer=tokenizer,
|
253 |
+
save_method="lora",
|
254 |
+
token=HF_TOKEN,
|
255 |
+
private=True
|
256 |
+
)
|
257 |
+
|
258 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
259 |
|
260 |
### Direct Use
|
|
|
296 |
## Training Details
|
297 |
|
298 |
### Training Data
|
299 |
+
データセット: llm-jp/magpie-sft-v1.0
|
300 |
+
データ量: 約50,000件の日本語サンプルのうちランダムに抽出した5000件
|
301 |
|
|
|
302 |
|
303 |
[More Information Needed]
|
304 |
|
|
|
312 |
|
313 |
|
314 |
#### Training Hyperparameters
|
315 |
+
LoRA 設定:
|
316 |
+
r=32
|
317 |
+
lora_alpha=32
|
318 |
+
lora_dropout=0.05
|
319 |
+
バッチサイズ: デバイスごとに 2
|
320 |
+
勾配累積ステップ: 4
|
321 |
+
学習率: 2e-4
|
322 |
+
学習エポック数: 1
|
323 |
|
324 |
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
325 |
|
|
|
373 |
|
374 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
375 |
|
376 |
+
- **Hardware Type:** [NVIDIA L4]
|
377 |
+
- **Hours used:** [約1時間]
|
378 |
- **Cloud Provider:** [More Information Needed]
|
379 |
- **Compute Region:** [More Information Needed]
|
380 |
- **Carbon Emitted:** [More Information Needed]
|