|
--- |
|
license: gemma |
|
library_name: peft |
|
tags: |
|
- trl |
|
- reward-trainer |
|
- generated_from_trainer |
|
base_model: google/gemma-2b |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: RM-HH-AllMix_helpful_gpt3_20000_gemma2b_shuffleFalse_extractchosenFalse |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# RM-HH-AllMix_helpful_gpt3_20000_gemma2b_shuffleFalse_extractchosenFalse |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0839 |
|
- Accuracy: 0.9876 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.41e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.7074 | 0.17 | 250 | 0.3710 | 0.8750 | |
|
| 0.6147 | 0.33 | 500 | 0.1958 | 0.9673 | |
|
| 0.5749 | 0.5 | 750 | 0.1424 | 0.9763 | |
|
| 0.5776 | 0.67 | 1000 | 0.1249 | 0.9827 | |
|
| 0.5601 | 0.84 | 1250 | 0.1087 | 0.9868 | |
|
| 0.5549 | 1.0 | 1500 | 0.0982 | 0.9887 | |
|
| 0.5465 | 1.17 | 1750 | 0.0941 | 0.9876 | |
|
| 0.5494 | 1.34 | 2000 | 0.0887 | 0.9872 | |
|
| 0.54 | 1.51 | 2250 | 0.0858 | 0.9895 | |
|
| 0.5375 | 1.67 | 2500 | 0.0848 | 0.9891 | |
|
| 0.5266 | 1.84 | 2750 | 0.0839 | 0.9876 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |