Edit model card

BLOOM_AAID_structured_train

This model is a fine-tuned version of bigscience/bloom-7b1 on the AAID_structured dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8177

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
1.7338 0.0109 10 0.9125
0.6341 0.0219 20 0.8568
0.5526 0.0328 30 0.8991
0.5651 0.0438 40 0.8944
0.5392 0.0547 50 0.8796
0.5038 0.0656 60 0.8612
0.4904 0.0766 70 0.8335
0.476 0.0875 80 0.8787
0.4819 0.0984 90 0.8442
0.4376 0.1094 100 0.8534
0.4443 0.1203 110 0.8331
0.44 0.1313 120 0.8530
0.4362 0.1422 130 0.8594
0.4273 0.1531 140 0.8177
0.438 0.1641 150 0.8450
0.4234 0.1750 160 0.8484
0.4254 0.1859 170 0.8263
0.4074 0.1969 180 0.8609
0.4209 0.2078 190 0.8371

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Holmeister/BLOOM_AAID_structured_train

Adapter
(43)
this model