BLOOM_AAID_structured_train_final
This model is a fine-tuned version of bigscience/bloom-7b1 on the AAID_structured dataset. It achieves the following results on the evaluation set:
- Loss: 0.8177
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7338 | 0.0109 | 10 | 0.9125 |
0.6341 | 0.0219 | 20 | 0.8568 |
0.5526 | 0.0328 | 30 | 0.8991 |
0.5651 | 0.0438 | 40 | 0.8944 |
0.5392 | 0.0547 | 50 | 0.8796 |
0.5038 | 0.0656 | 60 | 0.8612 |
0.4904 | 0.0766 | 70 | 0.8335 |
0.476 | 0.0875 | 80 | 0.8787 |
0.4819 | 0.0984 | 90 | 0.8442 |
0.4376 | 0.1094 | 100 | 0.8534 |
0.4443 | 0.1203 | 110 | 0.8331 |
0.44 | 0.1313 | 120 | 0.8530 |
0.4362 | 0.1422 | 130 | 0.8594 |
0.4273 | 0.1531 | 140 | 0.8177 |
0.438 | 0.1641 | 150 | 0.8450 |
0.4234 | 0.1750 | 160 | 0.8484 |
0.4254 | 0.1859 | 170 | 0.8263 |
0.4074 | 0.1969 | 180 | 0.8609 |
0.4209 | 0.2078 | 190 | 0.8371 |
0.4182 | 0.2188 | 200 | 0.8382 |
0.3883 | 0.2297 | 210 | 0.8301 |
0.3993 | 0.2406 | 220 | 0.8259 |
0.4082 | 0.2516 | 230 | 0.8462 |
0.3757 | 0.2625 | 240 | 0.8523 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Holmeister/BLOOM_AAID_structured_train_final
Base model
bigscience/bloom-7b1