Holmeister's picture
End of training
49fa9cf verified
|
raw
history blame
3.24 kB
---
license: other
base_model: boun-tabi-LMG/TURNA
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: TURNA_TSATweets_cond_gen_no_instruction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TURNA_TSATweets_cond_gen_no_instruction
This model is a fine-tuned version of [boun-tabi-LMG/TURNA](https://huggingface.co/boun-tabi-LMG/TURNA) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0704
- Rouge1: 0.705
- Rouge2: 0.095
- Rougel: 0.705
- Rougelsum: 0.705
- Bleu: 0.0
- Precisions: [0.705, 0.0, 0.0, 0.0]
- Brevity Penalty: 1.0
- Length Ratio: 1.0
- Translation Length: 200
- Reference Length: 200
- Meteor: 0.3525
- Score: 29.5
- Num Edits: 59
- Ref Length: 200.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Meteor | Score | Num Edits | Ref Length |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----:|:-----------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:-------:|:---------:|:----------:|
| No log | 0.5 | 82 | 0.0794 | 0.6569 | 0.0586 | 0.6552 | 0.6569 | 0.0 | [0.656896551724138, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3284 | 34.3103 | 199 | 580.0 |
| 1.7625 | 1.0 | 164 | 0.0707 | 0.6897 | 0.0638 | 0.6897 | 0.6879 | 0.0 | [0.6896551724137931, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3448 | 31.0345 | 180 | 580.0 |
| 1.7625 | 1.5 | 246 | 0.0778 | 0.7017 | 0.0284 | 0.7017 | 0.7 | 0.0 | [0.7017241379310345, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3509 | 29.8276 | 173 | 580.0 |
| 0.0921 | 2.0 | 328 | 0.0724 | 0.7259 | 0.0362 | 0.7241 | 0.7224 | 0.0 | [0.7241379310344828, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3621 | 27.5862 | 160 | 580.0 |
| 0.0921 | 2.5 | 410 | 0.0948 | 0.6845 | 0.1224 | 0.6828 | 0.6828 | 0.0 | [0.6827586206896552, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3414 | 31.7241 | 184 | 580.0 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1