|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
base_model: google/mt5-large |
|
model-index: |
|
- name: mt5_emotion_single |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5_emotion_single |
|
|
|
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6681 |
|
- Accuracy: 0.805 |
|
- Precision: 0.8255 |
|
- Recall: 0.805 |
|
- F1: 0.7872 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 0.4 | 50 | 1.6075 | 0.205 | 0.2154 | 0.205 | 0.0906 | |
|
| No log | 0.8 | 100 | 1.5035 | 0.385 | 0.2074 | 0.385 | 0.2506 | |
|
| 1.5333 | 1.2 | 150 | 1.4960 | 0.44 | 0.4163 | 0.44 | 0.3830 | |
|
| 1.5333 | 1.6 | 200 | 0.8993 | 0.73 | 0.7853 | 0.73 | 0.7005 | |
|
| 0.7703 | 2.0 | 250 | 1.2461 | 0.63 | 0.6412 | 0.63 | 0.5691 | |
|
| 0.7703 | 2.4 | 300 | 1.4746 | 0.58 | 0.5874 | 0.58 | 0.5419 | |
|
| 0.7703 | 2.8 | 350 | 1.4532 | 0.605 | 0.6832 | 0.605 | 0.5636 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|