ppo-LunarLander-v2 / config.json
Htar's picture
Upload PPo LunarLander-v2 trained agent
f133082
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff35ed4be20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff35ed4beb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff35ed4bf40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff35ed30040>", "_build": "<function ActorCriticPolicy._build at 0x7ff35ed300d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff35ed30160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff35ed301f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff35ed30280>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff35ed30310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff35ed303a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff35ed30430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff35ed304c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff35ed50280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688360827414772381, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0YSb32pHO6iDijuYaskrS2tpg5gSS7OAAAgD8AAIA/Zuq3vHtkqTnucQY8wahUPC2DEjxOJv07AAAAAAAAgD9mre48KTgzuh4AZTy5eUk8oETcujlGLz0AAIA/AACAP5qLnjxSKNC5T5Q0OmVWpDX43YE7GgRTuQAAgD8AAIA/M9ikPK7HrLgWSVK4R8n8s+yy8TuWnXs3AACAPwAAgD9m2H880p7KuzW5Cj4xdZS9VB8pvWiLfb4AAIA/AACAP2YpKT2P9gG6O+iTuxofBL2/XYY6iPrnPQAAgD8AAAAAADKEPdcDJjrwUTo6JcMJPegnpjsj78o7AACAPwAAgD+A+aU9CodluYZvgztVkuS4RZPKuDCc7LcAAIA/AACAPwAQSjwfAZQ6ecUFPNliajwvjZ+7pZAGPQAAAAAAAAAAM8UKPJlxVz7ludw9pXxKvmeZi7x3m449AAAAAAAAAACaefg8rgeaursD2boPtBe5IelwOwKDAToAAIA/AACAPzPXLT6ECkQ+intUvncbeL5EBWe8ompFPAAAAAAAAAAA5kKKPVL6kjrNCni8QvnKvNjjUjvVyPs8AAAAAAAAAACz4Rw9pJw0OpqUjzxX+pq8sZIGPAYUCD0AAAAAAAAAAKqZpb5QVdE+49phPv8zlr50qJu9qwsgPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5nV2aDwpiMAWyUTTYBjAF0lEdApCCMwpON53V9lChoBkdAby0ophF3IWgHTQgBaAhHQKQg7/io86p1fZQoaAZHQG+PrjxTbWVoB01JAWgIR0CkIWie/YapdX2UKGgGR0BwvMBEKE39aAdNPgFoCEdApCHOXC0ngHV9lChoBkdAbVnoIOYplWgHTUgBaAhHQKQrVj5Kvmp1fZQoaAZHQG/3sdtEXtVoB01ZAWgIR0CkLP7VBlcydX2UKGgGR0A/xomois4laAdL2WgIR0CkLTJNj9XLdX2UKGgGR0BwEBJz1bqyaAdNfQFoCEdApC1AYm9g4XV9lChoBkdAcDEXC0ngHmgHTVEBaAhHQKQtiqLCN0h1fZQoaAZHQG2o8z67/XJoB010AWgIR0CkLhvze40/dX2UKGgGR0Bwk1MpPRAsaAdNLQFoCEdApC6GBpYcN3V9lChoBkdAcd1KFqSHM2gHTSUBaAhHQKQul9PUKAt1fZQoaAZHQGyHT2FnIyVoB00WAWgIR0CkLuzsY2sJdX2UKGgGR0BtuJZQpF1CaAdN0wFoCEdApC8+wcHW0HV9lChoBkdAUjgbedkJ8mgHS/hoCEdApDAxKxs2vXV9lChoBkdAcDz4VARkE2gHTVEBaAhHQKQwu8jAzpJ1fZQoaAZHQHGOcnVoYeloB01cAWgIR0CkMMIr4FibdX2UKGgGR0BuCd5MURFraAdNUgFoCEdApDD1ALRa5nV9lChoBkdAcOEBGQSzxGgHTUcBaAhHQKQzW9KVY6p1fZQoaAZHQG9WhYeT3ZhoB00tAWgIR0CkM9Sy2QXAdX2UKGgGR0BxB6G5+YtyaAdNpgFoCEdApDSJSDRMOHV9lChoBkdAcP+4WUKRdWgHTRQBaAhHQKQ1AzOX3QF1fZQoaAZHQHH2eTFERapoB00JAWgIR0CkNeVAJLM+dX2UKGgGR0Buh3ppvgm7aAdNRQFoCEdApDYPwEyLynV9lChoBkdAceBTq0MPSWgHTSgBaAhHQKQ2hWuoxYd1fZQoaAZHQHFvoP5HmRxoB01GAWgIR0CkNqybQTmGdX2UKGgGR0BxadMURFqjaAdNOgFoCEdApDcSwr1/UnV9lChoBkdAcb4bvw3HaWgHTZgBaAhHQKQ3bAYYR/V1fZQoaAZHQEu8LWqcVgxoB0v7aAhHQKQ3fkDp1Rt1fZQoaAZHQHEC4yGi5/doB01UAWgIR0CkN7Ab6xgRdX2UKGgGR0Bvq9QqI7/5aAdNQQFoCEdApDgOs90RvnV9lChoBkdAcDNzUZvUBmgHTSoBaAhHQKQ4DI/7iyZ1fZQoaAZHQG/piTt9hJBoB00wAWgIR0CkOXBaTwDvdX2UKGgGR0ByVHA57w8XaAdNCAJoCEdApDmGskpqh3V9lChoBkdAbsb0DEFW4mgHTWQBaAhHQKQ62uxrzoV1fZQoaAZHQG3vBsyi22JoB009AWgIR0CkO8TQmeDndX2UKGgGR0BwYd6Vt4zKaAdNcAFoCEdApDvEGPgeinV9lChoBkdAbpuB5HEuQWgHTSYBaAhHQKQ8RgF5fMR1fZQoaAZHQHA3ww482aVoB01+AWgIR0CkPHBU70WedX2UKGgGR0BxCO89Oh0yaAdNBQJoCEdApDxyrFOwgXV9lChoBkdAbQ3HcUM5O2gHTRkBaAhHQKQ8gQNkOI91fZQoaAZHQHDslJpWV/toB01DAWgIR0CkPKXe3x4IdX2UKGgGR0BxBXCIk7fYaAdNFAFoCEdApDy2TC+De3V9lChoBkdAcYWSjxkNF2gHTWIBaAhHQKQ8v2HLzPN1fZQoaAZHQG9dlPBSDRNoB006AWgIR0CkPUgvL5h0dX2UKGgGR0BxDUWIoE0SaAdNIwFoCEdApD1zR+jM3nV9lChoBkdAcPIIpH7P6mgHTTEBaAhHQKQ9mz/IbOx1fZQoaAZHQG9e0+kgwGpoB01xAWgIR0CkPh5ha1TjdX2UKGgGR0AV++wkgOjJaAdL72gIR0CkPt/huO0cdX2UKGgGR0BtPS/7BO58aAdNTAFoCEdApD9V1QqI8HV9lChoBkdAbk1HPNVzZGgHTWEBaAhHQKQ/2wSJ0nx1fZQoaAZHQGyHfhddE9doB00uAWgIR0CkSXALJCBxdX2UKGgGR0BZVfzWf9P2aAdN6ANoCEdApGbTPppvgnV9lChoBkdAVr0O6NEPUmgHTegDaAhHQKRm1DKoybh1fZQoaAZHQFoG6XjU/fRoB03oA2gIR0CkaIOCwr1/dX2UKGgGR0BRPgrMC9ytaAdN6ANoCEdApGiXFYMfBHV9lChoBkdAYqmVSn+AE2gHTegDaAhHQKRotF/hESd1fZQoaAZHQFqVCcwxnFpoB03oA2gIR0CkaSA5BC2MdX2UKGgGR0Ba3LBfrrxBaAdN6ANoCEdApGlj212JSHV9lChoBkdAXPy2kSElFGgHTegDaAhHQKRpiir1dxB1fZQoaAZHQF39elKsdT5oB03oA2gIR0CkayR6Ww/xdX2UKGgGR0Bg0q/O+qR2aAdN6ANoCEdApGuszj3mFXV9lChoBkdAYDhHSWqtHWgHTegDaAhHQKRsNDAJswd1fZQoaAZHQF+Iw4bS7XhoB03oA2gIR0CkbYFUIcBEdX2UKGgGR0BWSih8IAwPaAdN6ANoCEdApG8pXhfjTHV9lChoBkdAXxB4RmK64GgHTegDaAhHQKRwGNWluWN1fZQoaAZHQF3ebBoEjgRoB03oA2gIR0CkcNHGbTc7dX2UKGgGR0BhfRVS4vvjaAdN6ANoCEdApHJeLDQ7cXV9lChoBkdAYJ0619fCymgHTegDaAhHQKSZ6gTRIBl1fZQoaAZHQFJ+pJPIn0FoB03oA2gIR0Ckmeq5kK/mdX2UKGgGR0BvfPGMn7YTaAdNrgJoCEdApJpdlGwzL3V9lChoBkdAWaBWT5ftyGgHTegDaAhHQKSbVNr0rbx1fZQoaAZHQGKkkRaouPFoB03oA2gIR0Ckm2KnFYMfdX2UKGgGR0BYrjF+/gzhaAdN6ANoCEdApJt2+/QBxXV9lChoBkdAXYeH31zySWgHTegDaAhHQKSbxWUbDMx1fZQoaAZHQFnmAzpHI6toB03oA2gIR0Ckm/H31zySdX2UKGgGR0BTJM2rGR3eaAdN6ANoCEdApJwK3d9DyHV9lChoBkdAU0FGUfPom2gHTegDaAhHQKSdMsQumJp1fZQoaAZHQFH7LCvX9R9oB03oA2gIR0CknZQvpQk5dX2UKGgGR0BY5e4XoC+2aAdN6ANoCEdApJ3sGs3hoHV9lChoBkdAW6cHTqjaf2gHTegDaAhHQKSe3BP9DQZ1fZQoaAZHQFZY8+RoysVoB03oA2gIR0Ckn/hufmLcdX2UKGgGR0BhjC3CsOoYaAdN6ANoCEdApKCRRGc4HXV9lChoBkdAUzxI+W4Vh2gHTegDaAhHQKShIt03fhx1fZQoaAZHQEyPizcAR05oB03oA2gIR0Ck0276YVqOdX2UKGgGR0Ban+EAYHgQaAdN6ANoCEdApNNwnx8UmHV9lChoBkdATysPMB6rvWgHTegDaAhHQKTUAi9Iwud1fZQoaAZHQFOiy+HrQgNoB03oA2gIR0Ck1SHQY1pCdX2UKGgGR0BbxqpcX3xnaAdN6ANoCEdApNUzAUL2H3V9lChoBkdAUHG7SRbKR2gHTegDaAhHQKTVSk1Mue11fZQoaAZHQFvNxqfvnbJoB03oA2gIR0Ck1aLQXyiFdX2UKGgGR0BN6pDeCTUzaAdN6ANoCEdApNXaxs2vS3V9lChoBkdAUM81m8M/hWgHTegDaAhHQKTV+C0WuYB1fZQoaAZHQE4H6XSjQAxoB03oA2gIR0Ck1y0cGTs6dX2UKGgGR0BcdJlFtsN2aAdN6ANoCEdApNeMqOLiuXV9lChoBkdAXzYaIeo1k2gHTegDaAhHQKTX3ssxwhp1fZQoaAZHQFwjoQ4CIUJoB03oA2gIR0Ck2LHxaxHHdX2UKGgGR0BVvpVsDW9UaAdN6ANoCEdApNmslLOAy3V9lChoBkdAVrVRO1v2oWgHTegDaAhHQKTaOZJCjUN1fZQoaAZHQF1PUDMeOn5oB03oA2gIR0Ck2qbsfJV9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 268, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQPZrLtHn9mfj2dafvop1vAowDaW5jlIoR561LVhAf7EpV3ZFqnJyb3gB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRbQ1ij53uRyFgcuah20dinACMA2luY5SKEccD9yomL/KPhTkuGPD5Z74AdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigX+CF2MAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}