metadata
language:
- de
license: mit
datasets:
- germaner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: gbert-large-germaner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: germaner
type: germaner
args: default
metrics:
- name: precision
type: precision
value: 0.8755112474437627
- name: recall
type: recall
value: 0.8861578266494179
- name: f1
type: f1
value: 0.8808023659508808
- name: accuracy
type: accuracy
value: 0.9788673918458856
gbert-large-germaner
This model is a fine-tuned version of deepset/gbert-large on the germaner dataset. It achieves the following results on the evaluation set:
- precision: 0.8755
- recall: 0.8862
- f1: 0.8808
- accuracy: 0.9789
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- num_train_epochs: 5
- train_batch_size: 8
- eval_batch_size: 8
- learning_rate: 3e-05
- weight_decay_rate: 0.01
- num_warmup_steps: 0
- fp16: True
Framework versions
- Transformers 4.21.3
- Datasets 1.18.0
- Tokenizers 0.12.1