|
--- |
|
license: mit |
|
datasets: |
|
- lisn519010/QM9 |
|
language: |
|
- en |
|
- zh |
|
metrics: |
|
- mae |
|
- accuracy |
|
- r_squared |
|
- mse |
|
pipeline_tag: graph-ml |
|
--- |
|
|
|
``` |
|
pip install transformers gradio rdkit torch torch_scatter torch_sparse torch_geometric |
|
``` |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoModel |
|
|
|
def predict_smiles(name): |
|
device = 'cpu' |
|
smiles = name |
|
assert isinstance(smiles, str), 'smiles must be str' |
|
|
|
smiles = smiles.strip() |
|
if ';' in smiles: |
|
smiles = smiles.split(";") |
|
elif ' ' in smiles: |
|
smiles = smiles.split(" ") |
|
elif ',' in smiles: |
|
smiles = smiles.split(",") |
|
else: |
|
smiles = [smiles] |
|
|
|
|
|
model = AutoModel.from_pretrained("Huhujingjing/custom-mxm", trust_remote_code=True).to(device) |
|
|
|
output, df = model.predict_smiles(smiles) |
|
|
|
return output, df |
|
|
|
iface = gr.Interface(fn=predict_smiles, inputs="text", outputs=["text", "dataframe"]) |
|
iface.launch(share=True) |
|
``` |