|
--- |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
datasets: |
|
- sentence-transformers/stsb |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:101 |
|
- loss:CoSENTLoss |
|
widget: |
|
- source_sentence: The man is slicing a potato. |
|
sentences: |
|
- A woman is slicing carrot. |
|
- Two women are singing. |
|
- A man is slicing potato. |
|
- source_sentence: A girl is playing a flute. |
|
sentences: |
|
- A woman stirs eggs in a bowl. |
|
- A girl plays a wind instrument. |
|
- A man is turning over tables in anger. |
|
- source_sentence: People are playing baseball. |
|
sentences: |
|
- The cricket player hit the ball. |
|
- A man breaks a stick. |
|
- A woman is pouring a yellow mixture on a frying pan. |
|
- source_sentence: A woman and man are riding in a car. |
|
sentences: |
|
- A woman driving a car is talking to the man seated beside her. |
|
- A woman is placing skewered food onto a cooker. |
|
- The man and woman are walking. |
|
- source_sentence: A cat is on a robot. |
|
sentences: |
|
- A man is eating bread. |
|
- A woman is pouring eyes into a bowl. |
|
- A boy sits on a bed, sings and plays a guitar. |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9186522039312566 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9276278198564623 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8991493568260668 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.9320766471557739 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9014580823459483 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.9289530024562572 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8789190604301875 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8957287815613981 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9186522039312566 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.9320766471557739 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Husain/ramdam_fingerprint_embedding_model") |
|
# Run inference |
|
sentences = [ |
|
'A cat is on a robot.', |
|
'A man is eating bread.', |
|
'A woman is pouring eyes into a bowl.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.9187 | |
|
| **spearman_cosine** | **0.9276** | |
|
| pearson_manhattan | 0.8991 | |
|
| spearman_manhattan | 0.9321 | |
|
| pearson_euclidean | 0.9015 | |
|
| spearman_euclidean | 0.929 | |
|
| pearson_dot | 0.8789 | |
|
| spearman_dot | 0.8957 | |
|
| pearson_max | 0.9187 | |
|
| spearman_max | 0.9321 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 101 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 101 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 9.44 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.46 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.66</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| |
|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> | |
|
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> | |
|
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### stsb |
|
|
|
* Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 9.35 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 9.9 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.39</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------|:----------------------------------------------------|:------------------| |
|
| <code>A woman is riding on a horse.</code> | <code>A man is turning over tables in anger.</code> | <code>0.0</code> | |
|
| <code>A man is screwing wood to a wall.</code> | <code>A man is giving a woman a massage.</code> | <code>0.04</code> | |
|
| <code>A girl is playing a flute.</code> | <code>A girl plays a wind instrument.</code> | <code>0.64</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 10 |
|
- `warmup_ratio`: 0.1 |
|
- `save_only_model`: True |
|
- `seed`: 33 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: True |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 33 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | loss | sts-dev_spearman_cosine | |
|
|:--------:|:-------:|:----------:|:-----------------------:| |
|
| 0.1538 | 2 | 4.4641 | 0.9366 | |
|
| 0.3077 | 4 | 4.4652 | 0.9366 | |
|
| 0.4615 | 6 | 4.4719 | 0.9366 | |
|
| 0.6154 | 8 | 4.4903 | 0.9366 | |
|
| 0.7692 | 10 | 4.5264 | 0.9373 | |
|
| 0.9231 | 12 | 4.5954 | 0.9339 | |
|
| 1.0769 | 14 | 4.6832 | 0.9328 | |
|
| 1.2308 | 16 | 4.7534 | 0.9289 | |
|
| 1.3846 | 18 | 4.8155 | 0.9281 | |
|
| 1.5385 | 20 | 4.8788 | 0.9269 | |
|
| 1.6923 | 22 | 4.9350 | 0.9272 | |
|
| 1.8462 | 24 | 4.9789 | 0.9239 | |
|
| 2.0 | 26 | 5.0132 | 0.9230 | |
|
| 2.1538 | 28 | 5.0636 | 0.9237 | |
|
| 2.3077 | 30 | 5.1068 | 0.9202 | |
|
| 2.4615 | 32 | 5.1460 | 0.9172 | |
|
| 2.6154 | 34 | 5.1602 | 0.9164 | |
|
| 2.7692 | 36 | 5.1493 | 0.9210 | |
|
| 2.9231 | 38 | 5.1399 | 0.9200 | |
|
| 3.0769 | 40 | 5.1342 | 0.9235 | |
|
| 3.2308 | 42 | 5.1413 | 0.9258 | |
|
| 3.3846 | 44 | 5.1440 | 0.9271 | |
|
| 3.5385 | 46 | 5.1583 | 0.9311 | |
|
| 3.6923 | 48 | 5.1664 | 0.9293 | |
|
| 3.8462 | 50 | 5.1682 | 0.9293 | |
|
| 4.0 | 52 | 5.1617 | 0.9293 | |
|
| 4.1538 | 54 | 5.1543 | 0.9293 | |
|
| 4.3077 | 56 | 5.1480 | 0.9293 | |
|
| 4.4615 | 58 | 5.1428 | 0.9291 | |
|
| 4.6154 | 60 | 5.1292 | 0.9298 | |
|
| 4.7692 | 62 | 5.1271 | 0.9276 | |
|
| 4.9231 | 64 | 5.1133 | 0.9276 | |
|
| 5.0769 | 66 | 5.0928 | 0.9270 | |
|
| 5.2308 | 68 | 5.0874 | 0.9270 | |
|
| 5.3846 | 70 | 5.0755 | 0.9270 | |
|
| 5.5385 | 72 | 5.0665 | 0.9270 | |
|
| 5.6923 | 74 | 5.0676 | 0.9293 | |
|
| 5.8462 | 76 | 5.0747 | 0.9293 | |
|
| 6.0 | 78 | 5.0647 | 0.9295 | |
|
| 6.1538 | 80 | 5.0763 | 0.9273 | |
|
| 6.3077 | 82 | 5.0832 | 0.9272 | |
|
| 6.4615 | 84 | 5.0750 | 0.9289 | |
|
| 6.6154 | 86 | 5.0547 | 0.9289 | |
|
| 6.7692 | 88 | 5.0350 | 0.9308 | |
|
| 6.9231 | 90 | 5.0221 | 0.9308 | |
|
| 7.0769 | 92 | 5.0107 | 0.9308 | |
|
| 7.2308 | 94 | 4.9967 | 0.9297 | |
|
| 7.3846 | 96 | 4.9983 | 0.9297 | |
|
| 7.5385 | 98 | 5.0026 | 0.9277 | |
|
| 7.6923 | 100 | 5.0095 | 0.9277 | |
|
| 7.8462 | 102 | 5.0102 | 0.9277 | |
|
| 8.0 | 104 | 5.0055 | 0.9271 | |
|
| 8.1538 | 106 | 5.0031 | 0.9271 | |
|
| 8.3077 | 108 | 4.9976 | 0.9271 | |
|
| 8.4615 | 110 | 4.9941 | 0.9271 | |
|
| 8.6154 | 112 | 4.9856 | 0.9276 | |
|
| 8.7692 | 114 | 4.9821 | 0.9276 | |
|
| 8.9231 | 116 | 4.9782 | 0.9276 | |
|
| 9.0769 | 118 | 4.9706 | 0.9276 | |
|
| 9.2308 | 120 | 4.9646 | 0.9276 | |
|
| 9.3846 | 122 | 4.9584 | 0.9276 | |
|
| 9.5385 | 124 | 4.9537 | 0.9276 | |
|
| 9.6923 | 126 | 4.9499 | 0.9276 | |
|
| 9.8462 | 128 | 4.9485 | 0.9276 | |
|
| **10.0** | **130** | **4.9463** | **0.9276** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.8.10 |
|
- Sentence Transformers: 3.1.0 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.0.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |