Huseyin's picture
Model save
e6c600d verified
metadata
library_name: transformers
license: mit
base_model: akdeniz27/bert-base-turkish-cased-ner
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-turkish-cased-ner-finetuned-ner
    results: []

bert-base-turkish-cased-ner-finetuned-ner

This model is a fine-tuned version of akdeniz27/bert-base-turkish-cased-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2379
  • Precision: 0.9707
  • Recall: 0.9708
  • F1: 0.9708
  • Accuracy: 0.9729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1631 1.0 3334 0.1465 0.9620 0.9627 0.9624 0.9651
0.1162 2.0 6668 0.1524 0.9659 0.9655 0.9657 0.9683
0.0938 3.0 10002 0.1452 0.9686 0.9691 0.9688 0.9712
0.048 4.0 13336 0.1734 0.9698 0.9697 0.9698 0.9719
0.0359 5.0 16670 0.1810 0.9701 0.9703 0.9702 0.9723
0.0274 6.0 20004 0.1941 0.9713 0.9713 0.9713 0.9734
0.0187 7.0 23338 0.2185 0.9700 0.9700 0.9700 0.9722
0.0229 8.0 26672 0.2265 0.9706 0.9707 0.9707 0.9728
0.015 9.0 30006 0.2325 0.9706 0.9705 0.9706 0.9729
0.009 10.0 33340 0.2379 0.9707 0.9708 0.9708 0.9729

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1