suolyer's picture
Update README.md
73dd8a4
|
raw
history blame
1.64 kB
---
language:
- zh
license: apache-2.0
tags:
- bert
- NLU
- NLI
inference: true
widget:
- text: "今天心情不好[SEP]今天很开心"
---
# Erlangshen-MegatronBert-1.3B-NLI, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM).
We collect 4 NLI(Natural Language Inference) datasets in the Chinese domain for finetune, with a total of 1014787 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext)
## Usage
```python
from transformers import BertForSequenceClassification
from transformers import BertTokenizer
import torch
tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-MegatronBert-1.3B-NLI')
model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-MegatronBert-1.3B-NLI')
texta='今天的饭不好吃'
textb='今天心情不好'
output=model(torch.tensor([tokenizer.encode(texta,textb)]))
print(torch.nn.functional.softmax(output.logits,dim=-1))
```
## Scores on downstream chinese tasks (without any data augmentation)
| Model | cmnli | ocnli | snli |
| :--------: | :-----: | :----: | :-----: |
| Erlangshen-Roberta-110M-NLI | 80.83 | 78.56 | 88.01 |
| Erlangshen-Roberta-330M-NLI | 82.25 | 79.82 | 88 |
| Erlangshen-MegatronBert-1.3B-NLI | 84.52 | 84.17 | 88.67 |
## Citation
If you find the resource is useful, please cite the following website in your paper.
```
@misc{Fengshenbang-LM,
title={Fengshenbang-LM},
author={IDEA-CCNL},
year={2021},
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
```