metadata
language: es
tags:
- biomedical
- clinical
- spanish
- xlm-roberta-large
license: mit
datasets:
- chizhikchi/CARES
metrics:
- f1
model-index:
- name: IIC/xlm-roberta-large-caresC
results:
- task:
type: multi-label-classification
dataset:
name: Cares Chapters
type: chizhikchi/CARES
split: test
metrics:
- name: f1
type: f1
value: 0.847
pipeline_tag: text-classification
xlm-roberta-large-caresC
This model is a finetuned version of xlm-roberta-large for the Cares Chapters dataset used in a benchmark in the paper TODO. The model has a F1 of 0.847
Please refer to the original publication for more information TODO LINK
Parameters used
parameter | Value |
---|---|
batch size | 32 |
learning rate | 3e-05 |
classifier dropout | 0 |
warmup ratio | 0 |
warmup steps | 0 |
weight decay | 0 |
optimizer | AdamW |
epochs | 10 |
early stopping patience | 3 |
BibTeX entry and citation info
TODO