Ibrhm-S's picture
End of training
28ae598 verified
metadata
library_name: transformers
language:
  - ar
base_model: Ibrhm-S/arabic-speech-to-text
tags:
  - generated_from_trainer
datasets:
  - Ibrhm-S/arabic-speech-to-text
metrics:
  - wer
model-index:
  - name: Whisper Small Ar - Ibrhm S
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: arabic-speech-to-text
          type: Ibrhm-S/arabic-speech-to-text
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 96.58314350797266

Whisper Small Ar - Ibrhm S

This model is a fine-tuned version of Ibrhm-S/arabic-speech-to-text on the arabic-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1640
  • Wer: 96.5831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0002 333.3333 1000 2.1972 94.9886
0.0001 666.6667 2000 2.7759 95.8998
0.0 1000.0 3000 3.0540 95.8998
0.0 1333.3333 4000 3.1640 96.5831

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1