ru-word-stress-transformer / char_tokenizer.py
IlyaGusev's picture
New version
62b5660
raw
history blame
3.91 kB
import os
from typing import Optional, Tuple, List
from collections import OrderedDict
from torch.utils.data import Dataset
from transformers import PreTrainedTokenizer, AutoTokenizer
def load_vocab(vocab_file):
vocab = OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
class CharTokenizer(PreTrainedTokenizer):
vocab_files_names = {"vocab_file": "vocab.txt"}
def __init__(
self,
vocab_file=None,
pad_token="[pad]",
unk_token="[unk]",
bos_token="[bos]",
eos_token="[eos]",
do_lower_case=False,
*args,
**kwargs
):
super().__init__(
pad_token=pad_token,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
do_lower_case=do_lower_case,
**kwargs
)
self.do_lower_case = do_lower_case
if not vocab_file or not os.path.isfile(vocab_file):
self.vocab = OrderedDict()
self.ids_to_tokens = OrderedDict()
else:
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
def train(self, file_path):
vocab = set()
with open(file_path) as r:
for line in r:
word = line.strip()
if self.do_lower_case:
word = word.lower()
vocab |= set(word)
vocab = list(vocab)
vocab.sort()
special_tokens = [self.pad_token, self.unk_token, self.bos_token, self.eos_token]
vocab = special_tokens + vocab
for i, ch in enumerate(vocab):
self.vocab[ch] = i
self.ids_to_tokens = vocab
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return self.vocab
def _convert_token_to_id(self, token):
if self.do_lower_case:
token = token.lower()
return self.vocab.get(token, self.vocab[self.unk_token])
def _convert_id_to_token(self, index):
return self.ids_to_tokens[index]
def _tokenize(self, text):
if self.do_lower_case:
text = text.lower()
return list(text)
def convert_tokens_to_string(self, tokens):
return "".join(tokens)
def build_inputs_with_special_tokens(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None
) -> List[int]:
bos = [self.bos_token_id]
eos = [self.eos_token_id]
return bos + token_ids_0 + eos
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None
) -> List[int]:
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None
) -> List[int]:
return (len(token_ids_0) + 2) * [0]
def save_vocabulary(
self,
save_directory: str,
filename_prefix: Optional[str] = None
) -> Tuple[str]:
assert os.path.isdir(save_directory)
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") +
self.vocab_files_names["vocab_file"]
)
index = 0
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
assert index == token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
AutoTokenizer.register("char_tokenizer", CharTokenizer)