IlyaGusev's picture
Update README.md
7403592
|
raw
history blame
4.17 kB
---
datasets:
- IlyaGusev/ru_turbo_saiga
- IlyaGusev/ru_sharegpt_cleaned
- IlyaGusev/oasst1_ru_main_branch
- IlyaGusev/ru_turbo_alpaca_evol_instruct
- lksy/ru_instruct_gpt4
language:
- ru
pipeline_tag: conversational
license: cc-by-4.0
---
# Saiga/Mistral 7B, Russian Mistral-based chatbot
Based on [Mistral OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca).
This is an adapter-only version.
Llama.cpp version: TBA
Colab: TBA
Training code: [link](https://github.com/IlyaGusev/rulm/tree/master/self_instruct).
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
MODEL_NAME = "IlyaGusev/saiga_mistral_7b"
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>"
DEFAULT_RESPONSE_TEMPLATE = "<s>bot\n"
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
class Conversation:
def __init__(
self,
message_template=DEFAULT_MESSAGE_TEMPLATE,
system_prompt=DEFAULT_SYSTEM_PROMPT,
response_template=DEFAULT_RESPONSE_TEMPLATE
):
self.message_template = message_template
self.response_template = response_template
self.messages = [{
"role": "system",
"content": system_prompt
}]
def add_user_message(self, message):
self.messages.append({
"role": "user",
"content": message
})
def add_bot_message(self, message):
self.messages.append({
"role": "bot",
"content": message
})
def get_prompt(self, tokenizer):
final_text = ""
for message in self.messages:
message_text = self.message_template.format(**message)
final_text += message_text
final_text += DEFAULT_RESPONSE_TEMPLATE
return final_text.strip()
def generate(model, tokenizer, prompt, generation_config):
data = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
data = {k: v.to(model.device) for k, v in data.items()}
output_ids = model.generate(
**data,
generation_config=generation_config
)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
return output.strip()
config = PeftConfig.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto"
)
model = PeftModel.from_pretrained(
model,
MODEL_NAME,
torch_dtype=torch.float16
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)
inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"]
for inp in inputs:
conversation = Conversation()
conversation.add_user_message(inp)
prompt = conversation.get_prompt(tokenizer)
output = generate(model, tokenizer, prompt, generation_config)
print(inp)
print(output)
print()
print("==============================")
print()
```
Examples:
```
User: Почему трава зеленая?
Saiga:
```
```
User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч
Saiga:
```
v1:
- dataset code revision d0d123dd221e10bb2a3383bcb1c6e4efe1b4a28a
- wandb [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/ip1qmm9p)
- 5 datasets: ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_instruct_gpt4
- Datasets merging script: [create_short_chat_set.py](https://github.com/IlyaGusev/rulm/blob/d0d123dd221e10bb2a3383bcb1c6e4efe1b4a28a/self_instruct/src/data_processing/create_short_chat_set.py)
- saiga_mistral_7b vs saiga2_13b: 243-31-141