Edit model card

Evaluation on Common Voice FR Test

The script used for training and evaluation can be found here: https://github.com/irebai/wav2vec2

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
)
import re

model_name = "Ilyes/wav2vec2-large-xlsr-53-french"

device = "cpu" # "cuda"

model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)

ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr")

chars_to_ignore_regex = '[\,\?\.\!\;\:\"\β€œ\%\β€˜\”\οΏ½\β€˜\’\’\’\β€˜\…\Β·\!\Ηƒ\?\Β«\β€Ή\Β»\β€Ίβ€œ\”\\ΚΏ\ΚΎ\β€ž\∞\\|\.\,\;\:\*\β€”\–\─\―\_\/\:\ː\;\,\=\Β«\Β»\β†’]'
def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
    batch["sampling_rate"] = resampler.new_freq
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
    return batch
resampler = torchaudio.transforms.Resample(48_000, 16_000)
    
ds = ds.map(map_to_array)

def map_to_pred(batch):
    features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)
    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["predicted"] = processor.batch_decode(pred_ids)
    batch["target"] = batch["sentence"]
    return batch
    
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))

Results

WER=12.82%

CER=4.40%

Downloads last month
52
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Ilyes/wav2vec2-large-xlsr-53-french

Spaces using Ilyes/wav2vec2-large-xlsr-53-french 3

Evaluation results