Jeronymous
commited on
Commit
β’
c86d5ad
1
Parent(s):
a3233bc
Update README.md
Browse files
README.md
CHANGED
@@ -39,15 +39,13 @@ import re
|
|
39 |
|
40 |
model_name = "Ilyes/wav2vec2-large-xlsr-53-french"
|
41 |
|
|
|
42 |
|
43 |
-
|
44 |
-
model = Wav2Vec2ForCTC.from_pretrained(model_name).to('cuda')
|
45 |
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
46 |
|
47 |
ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr")
|
48 |
|
49 |
-
|
50 |
-
|
51 |
chars_to_ignore_regex = '[\,\?\.\!\;\:\"\β\%\β\β\οΏ½\β\β\β\β\β\β¦\Β·\!\Η\?\Β«\βΉ\Β»\βΊβ\β\\ΚΏ\ΚΎ\β\β\\|\.\,\;\:\*\β\β\β\β\_\/\:\Λ\;\,\=\Β«\Β»\β]'
|
52 |
def map_to_array(batch):
|
53 |
speech, _ = torchaudio.load(batch["path"])
|
@@ -55,10 +53,10 @@ def map_to_array(batch):
|
|
55 |
batch["sampling_rate"] = resampler.new_freq
|
56 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("β", "'")
|
57 |
return batch
|
|
|
58 |
|
59 |
ds = ds.map(map_to_array)
|
60 |
|
61 |
-
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
62 |
def map_to_pred(batch):
|
63 |
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
|
64 |
input_values = features.input_values.to(device)
|
|
|
39 |
|
40 |
model_name = "Ilyes/wav2vec2-large-xlsr-53-french"
|
41 |
|
42 |
+
device = "cpu" # "cuda"
|
43 |
|
44 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
|
|
45 |
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
46 |
|
47 |
ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr")
|
48 |
|
|
|
|
|
49 |
chars_to_ignore_regex = '[\,\?\.\!\;\:\"\β\%\β\β\οΏ½\β\β\β\β\β\β¦\Β·\!\Η\?\Β«\βΉ\Β»\βΊβ\β\\ΚΏ\ΚΎ\β\β\\|\.\,\;\:\*\β\β\β\β\_\/\:\Λ\;\,\=\Β«\Β»\β]'
|
50 |
def map_to_array(batch):
|
51 |
speech, _ = torchaudio.load(batch["path"])
|
|
|
53 |
batch["sampling_rate"] = resampler.new_freq
|
54 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("β", "'")
|
55 |
return batch
|
56 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
57 |
|
58 |
ds = ds.map(map_to_array)
|
59 |
|
|
|
60 |
def map_to_pred(batch):
|
61 |
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
|
62 |
input_values = features.input_values.to(device)
|