Immanuelraja's picture
update model card README.md
997ac82
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: train
args: cord
metrics:
- name: Precision
type: precision
value: 0.9478778853313478
- name: Recall
type: recall
value: 0.9528443113772455
- name: F1
type: f1
value: 0.950354609929078
- name: Accuracy
type: accuracy
value: 0.9541595925297114
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2176
- Precision: 0.9479
- Recall: 0.9528
- F1: 0.9504
- Accuracy: 0.9542
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.56 | 250 | 1.0378 | 0.7404 | 0.7964 | 0.7674 | 0.8035 |
| 1.4104 | 3.12 | 500 | 0.5605 | 0.8291 | 0.8645 | 0.8465 | 0.8790 |
| 1.4104 | 4.69 | 750 | 0.3959 | 0.8728 | 0.8990 | 0.8857 | 0.9155 |
| 0.4054 | 6.25 | 1000 | 0.3111 | 0.9231 | 0.9349 | 0.9290 | 0.9393 |
| 0.4054 | 7.81 | 1250 | 0.2847 | 0.9135 | 0.9251 | 0.9193 | 0.9317 |
| 0.2124 | 9.38 | 1500 | 0.2457 | 0.9281 | 0.9379 | 0.9330 | 0.9410 |
| 0.2124 | 10.94 | 1750 | 0.2390 | 0.9371 | 0.9484 | 0.9427 | 0.9520 |
| 0.1438 | 12.5 | 2000 | 0.2196 | 0.9443 | 0.9513 | 0.9478 | 0.9546 |
| 0.1438 | 14.06 | 2250 | 0.2182 | 0.9478 | 0.9521 | 0.9500 | 0.9533 |
| 0.1093 | 15.62 | 2500 | 0.2176 | 0.9479 | 0.9528 | 0.9504 | 0.9542 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1