|
--- |
|
language: |
|
- en |
|
- zh |
|
- de |
|
- es |
|
- ru |
|
- ko |
|
- fr |
|
- ja |
|
- pt |
|
- tr |
|
- pl |
|
- ca |
|
- nl |
|
- ar |
|
- sv |
|
- it |
|
- id |
|
- hi |
|
- fi |
|
- vi |
|
- he |
|
- uk |
|
- el |
|
- ms |
|
- cs |
|
- ro |
|
- da |
|
- hu |
|
- ta |
|
- no |
|
- th |
|
- ur |
|
- hr |
|
- bg |
|
- lt |
|
- la |
|
- mi |
|
- ml |
|
- cy |
|
- sk |
|
- te |
|
- fa |
|
- lv |
|
- bn |
|
- sr |
|
- az |
|
- sl |
|
- kn |
|
- et |
|
- mk |
|
- br |
|
- eu |
|
- is |
|
- hy |
|
- ne |
|
- mn |
|
- bs |
|
- kk |
|
- sq |
|
- sw |
|
- gl |
|
- mr |
|
- pa |
|
- si |
|
- km |
|
- sn |
|
- yo |
|
- so |
|
- af |
|
- oc |
|
- ka |
|
- be |
|
- tg |
|
- sd |
|
- gu |
|
- am |
|
- yi |
|
- lo |
|
- uz |
|
- fo |
|
- ht |
|
- ps |
|
- tk |
|
- nn |
|
- mt |
|
- sa |
|
- lb |
|
- my |
|
- bo |
|
- tl |
|
- mg |
|
- as |
|
- tt |
|
- haw |
|
- ln |
|
- ha |
|
- ba |
|
- jw |
|
- su |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
license: mit |
|
library_name: ctranslate2 |
|
--- |
|
|
|
# Whisper large-v3-turbo model for CTranslate2 |
|
|
|
This repository contains the conversion of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. |
|
|
|
This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/systran/faster-whisper). |
|
|
|
## Example with batch inference |
|
|
|
```python |
|
import time |
|
|
|
from faster_whisper import WhisperModel, BatchedInferencePipeline |
|
from faster_whisper.audio import decode_audio |
|
|
|
model = WhisperModel("Infomaniak-AI/faster-whisper-large-v3-turbo", |
|
device="cuda", |
|
num_workers=4, |
|
compute_type='float16') |
|
|
|
batch = BatchedInferencePipeline(model=model, |
|
use_vad_model=True, |
|
chunk_length=30) |
|
|
|
audio = decode_audio("audio.mp3", sampling_rate=model.feature_extractor.sampling_rate) |
|
start_time = time.time() |
|
segment_generator, info = batch.transcribe(audio, |
|
batch_size=32, |
|
beam_size=5, |
|
task="transcribe", |
|
word_timestamps=True, |
|
suppress_blank=True) |
|
segments = [] |
|
text = "" |
|
for segment in segment_generator: |
|
segments.append(segment) |
|
text = text + segment.text |
|
|
|
print("--- %s seconds ---" % (time.time() - start_time)) |
|
|
|
``` |
|
|
|
## Conversion details |
|
|
|
The original model was converted with the following command: |
|
|
|
``` |
|
ct2-transformers-converter --model openai/whisper-large-v3-turbo --output_dir whisper-large-v3-turbo --copy_files tokenizer.json preprocessor_config.json --quantization float16 |
|
``` |
|
|
|
Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). |
|
|
|
## More information |
|
|
|
**For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-large-v3-turbo).** |