English
File size: 2,648 Bytes
f829afe
 
 
 
 
 
 
 
 
 
 
 
78c965b
f829afe
 
 
 
 
 
4fc7a47
 
 
 
 
 
 
 
 
 
 
 
 
 
4107113
4fc7a47
 
 
 
 
 
 
 
 
f829afe
 
 
49ee5dd
f829afe
 
 
 
 
d222d34
f829afe
92edfdd
 
 
 
248a189
92edfdd
 
 
 
 
 
f829afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: bigscience-bloom-rail-1.0
datasets:
- NeelNanda/pile-10k
language:
- en
---


## Model Details

This model is an int4 model with group_size 128 of [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1)  generated by [intel/auto-round](https://github.com/intel/auto-round). 
Inference of this model is compatible with AutoGPTQ's Kernel.






### Reproduce the model

Here is the sample command to reproduce the model

```bash
git clone https://github.com/intel/auto-round
cd auto-round/examples/language-modeling
pip install -r requirements.txt
python3 main.py \
--model_name  bigscience/bloom-7b1 \
--device 0 \
--group_size 128 \
--bits 4 \
--iters 1000 \
--nsamples 512 \
--deployment_device 'gpu' \
--output_dir "./tmp_autoround" \

```






### Evaluate the model 

Install [lm-eval-harness 0.4.2](https://github.com/EleutherAI/lm-evaluation-harness.git) from source.

```bash
lm_eval --model hf --model_args pretrained="Intel/bloom-7b1-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu --batch_size 32
```

| Metric         | FP16   | INT4   |
| -------------- | ------ | ------ |
| Avg.           | 0.4732 | 0.4716 |
| mmlu           | 0.2638 | 0.2598 |
| lambada_openai | 0.5760 | 0.5729 |
| hellaswag      | 0.4649 | 0.4619 |
| winogrande     | 0.6456 | 0.6369 |
| piqa           | 0.7269 | 0.7263 |
| truthfulqa_mc1 | 0.2240 | 0.2350 |
| openbookqa     | 0.2500 | 0.2440 |
| boolq          | 0.6284 | 0.6294 |
| arc_easy       | 0.6498 | 0.6444 |
| arc_challenge  | 0.3029 | 0.3055 |





## Caveats and Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Here are a couple of useful links to learn more about Intel's AI software:

* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
* Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)



## Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.



## Cite

@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }

[arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)