|
--- |
|
license: apache-2.0 |
|
tags: |
|
- int8 |
|
- Intel® Neural Compressor |
|
- neural-compressor |
|
- PostTrainingDynamic |
|
datasets: |
|
- cnn_dailymail |
|
metrics: |
|
- rougeLsum |
|
--- |
|
|
|
# INT8 DistilBart finetuned on CNN DailyMail |
|
|
|
### Post-training dynamic quantization |
|
|
|
This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). |
|
|
|
The original fp32 model comes from the fine-tuned model [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6). |
|
|
|
Below linear modules (21/133) are fallbacked to fp32 for less than 1% relative accuracy loss: |
|
|
|
**'model.decoder.layers.2.fc2'**, **'model.encoder.layers.11.fc2'**, **'model.decoder.layers.1.fc2'**, **'model.decoder.layers.0.fc2'**, **'model.decoder.layers.4.fc1'**, **'model.decoder.layers.3.fc2'**, **'model.encoder.layers.8.fc2'**, **'model.decoder.layers.3.fc1'**, **'model.encoder.layers.11.fc1'**, **'model.encoder.layers.0.fc2'**, **'model.encoder.layers.3.fc1'**, **'model.encoder.layers.10.fc2'**, **'model.decoder.layers.5.fc1'**, **'model.encoder.layers.1.fc2'**, **'model.encoder.layers.3.fc2'**, **'lm_head'**, **'model.encoder.layers.7.fc2'**, **'model.decoder.layers.0.fc1'**, **'model.encoder.layers.4.fc1'**, **'model.encoder.layers.10.fc1'**, **'model.encoder.layers.6.fc1'** |
|
|
|
### Evaluation result |
|
|
|
| |INT8|FP32| |
|
|---|:---:|:---:| |
|
| **Accuracy (eval-rougeLsum)** | 41.4707 | 41.8117 | |
|
| **Model size** |722M|1249M| |
|
### Load with optimum: |
|
|
|
```python |
|
# transformers <= 4.23.0 |
|
from optimum.intel import INCModelForSeq2SeqLM |
|
|
|
model_id = "Intel/distilbart-cnn-12-6-int8-dynamic" |
|
int8_model = INCModelForSeq2SeqLM.from_pretrained(model_id) |
|
``` |
|
|