Inv's picture
Upload folder using huggingface_hub
65998d5 verified
|
raw
history blame
2.19 kB
---
base_model:
- mistralai/Mistral-7B-v0.1
library_name: transformers
tags:
- mergekit
- merge
- mistralai/Mistral-7B-v0.1
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- maywell/PiVoT-0.1-Evil-a
- mlabonne/ArchBeagle-7B
- NeverSleep/Noromaid-7B-0.4-DPO
---
# konstanta-final
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [maywell/PiVoT-0.1-Evil-a](https://huggingface.co/maywell/PiVoT-0.1-Evil-a)
* [mlabonne/ArchBeagle-7B](https://huggingface.co/mlabonne/ArchBeagle-7B)
* [NeverSleep/Noromaid-7B-0.4-DPO](https://huggingface.co/NeverSleep/Noromaid-7B-0.4-DPO)
### Configuration
The following YAML configuration was used to produce this model (to reproduce use mergekit-mega command):
```yaml
base_model: mistralai/Mistral-7B-v0.1
dtype: float16
merge_method: dare_ties
parameters:
int8_mask: true
slices:
- sources:
- layer_range: [0, 32]
model: mistralai/Mistral-7B-v0.1
- layer_range: [0, 32]
model: : SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
density: 0.8
weight: 0.5
- layer_range: [0, 32]
model: : maywell/PiVoT-0.1-Evil-a
parameters:
density: 0.3
weight: 0.15
name: first-step
---
base_model: mistralai/Mistral-7B-v0.1
dtype: float16
merge_method: dare_ties
parameters:
int8_mask: true
slices:
- sources:
- layer_range: [0, 32]
model: mistralai/Mistral-7B-v0.1
- layer_range: [0, 32]
model: mlabonne/ArchBeagle-7B
parameters:
density: 0.8
weight: 0.75
- layer_range: [0, 32]
model: LakoMoor/Silicon-Alice-7B
parameters:
density: 0.6
weight: 0.30
name: second-step
---
models:
- model: first-step
- model: second-step
merge_method: slerp
base_model: first-step
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
int8_mask: true
normalize: true
dtype: float16
```