dinov2-base-ODIR-5K / README.md
Isaskar's picture
End of training
27487c3 verified
---
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
model-index:
- name: dinov2-base-ODIR-5K
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7188755020080321
- name: F1
type: f1
value: 0.6332945285215367
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dinov2-base-ODIR-5K
This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5700
- Accuracy: 0.7189
- F1: 0.6333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 0.6374 | 0.9858 | 52 | 0.6186 | 0.6778 | 0.2031 |
| 0.5789 | 1.9905 | 105 | 0.5661 | 0.7153 | 0.3794 |
| 0.5368 | 2.9953 | 158 | 0.5334 | 0.7407 | 0.5756 |
| 0.4162 | 4.0 | 211 | 0.5747 | 0.6983 | 0.6198 |
| 0.3679 | 4.9858 | 263 | 0.5700 | 0.7189 | 0.6333 |
| 0.2431 | 5.9147 | 312 | 0.6111 | 0.7564 | 0.6331 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1