ppo-LunarLander-v2 / config.json
ItchyB's picture
Upload PPO LunarLander-v2 trained agent
53bc873
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f934481c940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f934481c9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f934481ca60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f934481caf0>", "_build": "<function ActorCriticPolicy._build at 0x7f934481cb80>", "forward": "<function ActorCriticPolicy.forward at 0x7f934481cc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f934481cca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f934481cd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f934481cdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f934481ce50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f934481cee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f934481cf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f934481dc40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683493305005706574, "learning_rate": 0.0, "tensorboard_log": "tensor_logs/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVEwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcC9ob21lL2J5cm9uL21pbmljb25kYTMvZW52cy9sdW5hci1sYW5kZXItb3B0aW1pemVkL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHAvaG9tZS9ieXJvbi9taW5pY29uZGEzL2VudnMvbHVuYXItbGFuZGVyLW9wdGltaXplZC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECK7T1rLok/ItmuPoeEVL8m7vU++AZqPgAAAAAAAAAAM2LevMMRXbqOi982OYEoMgLFmDoLTwG2AACAPwAAgD9NEtk9C8RnP7aRLj7hMGK/c/vNPpOXj7wAAAAAAAAAAGZOR7wpFDC6VbPEOvFxvjXHDqe7qjPouQAAgD8AAIA/ANAgvQXU4btCfH49thaEvAlffjvZ4449AACAPwAAgD+a5/68u7vVPV6grj0eCOG++penvMPbfD0AAAAAAAAAAM2fYz0KlVG7jj4yvYLwlzxCEoY8e1GCvQAAgD8AAIA/zdRpO9AYsz/qxjg+QPqLvhjLhbuusyW9AAAAAAAAAACAeJw9tWk4Pveol7zJWPe+2+bUPJSzBL0AAAAAAAAAAAALZT1i0Jk/4Di5Pl6MYL+hRbI91dnCPgAAAAAAAAAAJqQkPgHE4T71yIC+yhkpv7cKxD0Cnn++AAAAAAAAAAAzIak8T1FVPUJgID08frW+f5nuPH6qeD0AAAAAAAAAAM2T7b0MWlU/OFoLvlrFQb8Wjpi+senFvQAAAAAAAAAAzVW4vLGGmT8RkgW+7VRQvykiNr3hbwC+AAAAAAAAAAAAO0G9eYVwP6iLnL2Ai26/6hm2veOvo70AAAAAAAAAAAD2JLx7Gt26lWiLu72nBD23dtQ54kfhvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5bM8D+5UcUCUhpRSlIwBbJRLgowBdJRHQLjXGpItlI51fZQoaAZoCWgPQwh2ilWD8OlzQJSGlFKUaBVLnmgWR0C41y8hkiD/dX2UKGgGaAloD0MIaR7AIr+mckCUhpRSlGgVS5FoFkdAuNczAGjbjHV9lChoBmgJaA9DCNf4TPZPl3FAlIaUUpRoFUuBaBZHQLjXUnndO7B1fZQoaAZoCWgPQwghdxGmqHZxQJSGlFKUaBVLomgWR0C412JDiOvMdX2UKGgGaAloD0MI39416IuDcUCUhpRSlGgVS4VoFkdAuNdw0tRNy3V9lChoBmgJaA9DCPIlVHA4p3JAlIaUUpRoFUu1aBZHQLjXckXUH6d1fZQoaAZoCWgPQwgAkX77+uNwQJSGlFKUaBVLhmgWR0C413OueSSvdX2UKGgGaAloD0MIb0ijAmdscUCUhpRSlGgVS51oFkdAuNd7/n4fwXV9lChoBmgJaA9DCBmSk4mbUHJAlIaUUpRoFUuEaBZHQLjXfd2xIJ91fZQoaAZoCWgPQwhHx9XIrsByQJSGlFKUaBVLs2gWR0C4146RdQfqdX2UKGgGaAloD0MIgCiYMcURckCUhpRSlGgVS6loFkdAuNejWRRuTHV9lChoBmgJaA9DCH2W58Fd5HJAlIaUUpRoFUufaBZHQLjXsxHG0eF1fZQoaAZoCWgPQwjH1F3ZRdZwQJSGlFKUaBVLg2gWR0C4194u9OARdX2UKGgGaAloD0MI3C3JAfs3cUCUhpRSlGgVS5hoFkdAuNffhBJI2HV9lChoBmgJaA9DCFLuPseHvHFAlIaUUpRoFUuraBZHQLjX4Oby6MB1fZQoaAZoCWgPQwjVIqKYvGRzQJSGlFKUaBVLlGgWR0C41/IZdfLLdX2UKGgGaAloD0MIelBQihbRc0CUhpRSlGgVS8FoFkdAuNgPKQq7RXV9lChoBmgJaA9DCDQQy2aOfW9AlIaUUpRoFUuSaBZHQLjYFYChew91fZQoaAZoCWgPQwifxyjPfABxQJSGlFKUaBVLimgWR0C42Bnyy2QXdX2UKGgGaAloD0MI2PD0StnwckCUhpRSlGgVS8RoFkdAuNgkAn2IwnV9lChoBmgJaA9DCNJUT+ZfBXBAlIaUUpRoFUuNaBZHQLjYLdPci4d1fZQoaAZoCWgPQwg26bZEbk5xQJSGlFKUaBVLkmgWR0C42D91EE1VdX2UKGgGaAloD0MIkdCWc6kccUCUhpRSlGgVS6BoFkdAuNhHcwg1WXV9lChoBmgJaA9DCEJAvoQKpHNAlIaUUpRoFUulaBZHQLjYSg/Tspp1fZQoaAZoCWgPQwgLR5BKsY5vQJSGlFKUaBVLm2gWR0C42Gf5pJwsdX2UKGgGaAloD0MIs5quJ7q+cUCUhpRSlGgVS65oFkdAuNhrzf779HV9lChoBmgJaA9DCGx2pPrOPHRAlIaUUpRoFUvGaBZHQLjYdTn7pFF1fZQoaAZoCWgPQwgurBvvDsVyQJSGlFKUaBVLg2gWR0C42H8oUi6hdX2UKGgGaAloD0MIebDFbh+hcECUhpRSlGgVS4RoFkdAuNiBAjY7JXV9lChoBmgJaA9DCFWEm4zqv3NAlIaUUpRoFUusaBZHQLjYiAeJYT11fZQoaAZoCWgPQwgAVkeO9NFwQJSGlFKUaBVLg2gWR0C42KUaZQYUdX2UKGgGaAloD0MIFR40u26UcUCUhpRSlGgVS6loFkdAuNiqlN1yNnV9lChoBmgJaA9DCL9+iA0WfHJAlIaUUpRoFUunaBZHQLjYuTJQtSR1fZQoaAZoCWgPQwi9bhEYa6xwQJSGlFKUaBVLg2gWR0C42LjLB9CvdX2UKGgGaAloD0MIKO54k99/cUCUhpRSlGgVS5hoFkdAuNjHIYFaCHV9lChoBmgJaA9DCJLqO79oNnBAlIaUUpRoFUuMaBZHQLjYzbWmP5p1fZQoaAZoCWgPQwgLl1XYDDNwQJSGlFKUaBVLkmgWR0C42PDJhfBvdX2UKGgGaAloD0MIp5GWyps2cUCUhpRSlGgVS5loFkdAuNjxhRZU1nV9lChoBmgJaA9DCGiSWFKu63BAlIaUUpRoFUudaBZHQLjZA7kn1Fp1fZQoaAZoCWgPQwhgH526Mm1wQJSGlFKUaBVLxmgWR0C42QhgqmTDdX2UKGgGaAloD0MIglZgyGozcUCUhpRSlGgVS6toFkdAuNk+1/lQuXV9lChoBmgJaA9DCCqtvyVAw3BAlIaUUpRoFUuYaBZHQLjZQsYEW691fZQoaAZoCWgPQwjG20qvzYRyQJSGlFKUaBVLpmgWR0C42UpeZ5RkdX2UKGgGaAloD0MIvVRszGv3ckCUhpRSlGgVS55oFkdAuNlOICU5dXV9lChoBmgJaA9DCO49XHJc0XJAlIaUUpRoFUu4aBZHQLjZU1VYISl1fZQoaAZoCWgPQwhiu3uA7h1MQJSGlFKUaBVLTWgWR0C42Vg+t8u0dX2UKGgGaAloD0MIchk3NdBockCUhpRSlGgVS65oFkdAuNll7ojfN3V9lChoBmgJaA9DCFD8GHNX63NAlIaUUpRoFUuYaBZHQLjZcw35vcd1fZQoaAZoCWgPQwjzWgnd5bBwQJSGlFKUaBVLoGgWR0C42YsHv+fidX2UKGgGaAloD0MI1A5/TdYPcUCUhpRSlGgVS6RoFkdAuNmftfG+9XV9lChoBmgJaA9DCHl5OldUR3RAlIaUUpRoFUvAaBZHQLjZoslLOA11fZQoaAZoCWgPQwhfmEwVTEByQJSGlFKUaBVLomgWR0C42aTASFoMdX2UKGgGaAloD0MIPzc0ZSdmckCUhpRSlGgVS85oFkdAuNnOwW3z+XV9lChoBmgJaA9DCKtBmNt9k3NAlIaUUpRoFUuaaBZHQLjZ08IAwPB1fZQoaAZoCWgPQwjEYP4KWYhxQJSGlFKUaBVLqmgWR0C42dbhegL7dX2UKGgGaAloD0MIey5TkyApckCUhpRSlGgVS5toFkdAuNnYZR8+inV9lChoBmgJaA9DCAHBHD2+H3JAlIaUUpRoFUt9aBZHQLjZ5yNGViZ1fZQoaAZoCWgPQwhnCp3X2CFvQJSGlFKUaBVLlGgWR0C42guN96TodX2UKGgGaAloD0MIRMNi1HWcckCUhpRSlGgVS6VoFkdAuNoNUNrj53V9lChoBmgJaA9DCOaSqu1mhnBAlIaUUpRoFUudaBZHQLjaESlWOp91fZQoaAZoCWgPQwjz4sRXe9JwQJSGlFKUaBVLpWgWR0C42hdCE6DHdX2UKGgGaAloD0MIa39ne3SCc0CUhpRSlGgVS6doFkdAuNo7O7g883V9lChoBmgJaA9DCFn3j4XoanJAlIaUUpRoFUu4aBZHQLjaQRw6ySp1fZQoaAZoCWgPQwgxtDo5Q5FxQJSGlFKUaBVLrGgWR0C42k3Zbpu/dX2UKGgGaAloD0MIE9bG2Am9b0CUhpRSlGgVS4xoFkdAuNpPErGzbHV9lChoBmgJaA9DCLWmeccpj3JAlIaUUpRoFUujaBZHQLjabdQwbl11fZQoaAZoCWgPQwjGxObjmm5zQJSGlFKUaBVLtWgWR0C42m+dCmdidX2UKGgGaAloD0MIGjT0TzDEcUCUhpRSlGgVS6poFkdAuNp5IbwSanV9lChoBmgJaA9DCLKbGf3ognBAlIaUUpRoFUuWaBZHQLjah77sOXp1fZQoaAZoCWgPQwiLTwEwnthvQJSGlFKUaBVLl2gWR0C42o0hRqGldX2UKGgGaAloD0MIGZC93v32cUCUhpRSlGgVS6FoFkdAuNqY0BOpKnV9lChoBmgJaA9DCLyyCwZXwHJAlIaUUpRoFUu2aBZHQLjapylvZRN1fZQoaAZoCWgPQwiQozmy8ohwQJSGlFKUaBVLjmgWR0C42sGDlHSXdX2UKGgGaAloD0MIceZXc0Ccc0CUhpRSlGgVS8ZoFkdAuNrXGp++d3V9lChoBmgJaA9DCEAWokMgrnBAlIaUUpRoFUumaBZHQLja238GcF11fZQoaAZoCWgPQwiIS447pcZvQJSGlFKUaBVLomgWR0C42uB+vyLAdX2UKGgGaAloD0MIJQfsanKZb0CUhpRSlGgVS4xoFkdAuNrmUGFBY3V9lChoBmgJaA9DCBe30QCeW3JAlIaUUpRoFUuxaBZHQLja5+8XenB1fZQoaAZoCWgPQwi+a9CXnu9wQJSGlFKUaBVLn2gWR0C42wy3Td+HdX2UKGgGaAloD0MIclMDzWcTcUCUhpRSlGgVS6NoFkdAuNsQGIKtxXV9lChoBmgJaA9DCK+196kqg3BAlIaUUpRoFUuvaBZHQLjbElkYoAp1fZQoaAZoCWgPQwgCui9n9iJxQJSGlFKUaBVLmWgWR0C42yKNVBD5dX2UKGgGaAloD0MIvxBy3j+WckCUhpRSlGgVS6FoFkdAuNs0NMGorHV9lChoBmgJaA9DCLNAu0MK63JAlIaUUpRoFUuwaBZHQLjbPcYIjW11fZQoaAZoCWgPQwhNZVHYxd5xQJSGlFKUaBVLomgWR0C420n9aUzLdX2UKGgGaAloD0MIluzYCMQJdECUhpRSlGgVS5ZoFkdAuNtZMtbs4XV9lChoBmgJaA9DCL4ViQnqL3FAlIaUUpRoFUu4aBZHQLjbYVtoBaN1fZQoaAZoCWgPQwiOsKiIk85xQJSGlFKUaBVLj2gWR0C422wX668QdX2UKGgGaAloD0MIilkvhnKackCUhpRSlGgVS7doFkdAuNt1fzBhyHV9lChoBmgJaA9DCOQUHcml0HFAlIaUUpRoFUuPaBZHQLjbg1X/5tZ1fZQoaAZoCWgPQwi6vaQx2sJyQJSGlFKUaBVLj2gWR0C424mqPwNLdX2UKGgGaAloD0MIxY7GoT77cECUhpRSlGgVS4xoFkdAuNuZPAO8TXV9lChoBmgJaA9DCFe0Oc6tIXNAlIaUUpRoFUusaBZHQLjbuijcmBx1fZQoaAZoCWgPQwgYzjXMkOdxQJSGlFKUaBVLsWgWR0C428oj8k2QdX2UKGgGaAloD0MIKeyi6AEUcUCUhpRSlGgVS5FoFkdAuNvMbhm5D3V9lChoBmgJaA9DCIBEEyiiWnJAlIaUUpRoFUuVaBZHQLjb2DrJKap1fZQoaAZoCWgPQwhTz4JQXjpyQJSGlFKUaBVLp2gWR0C42/Scf/3ndX2UKGgGaAloD0MIW7G/7J4mcUCUhpRSlGgVS4FoFkdAuNv4pazNU3V9lChoBmgJaA9DCLFQa5o3pHFAlIaUUpRoFUuDaBZHQLjcCnpjc211ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIS90bXAvaXB5a2VybmVsXzk0MDIvMzQzMTQ2MjU0Ni5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}