File size: 130,549 Bytes
4e2de75 3a0c27d 4e2de75 10887b4 4e2de75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 |
[2023-04-30 12:43:57,803][678550] Saving configuration to ./train_dir/doom_health_gathering_supreme/config.json... [2023-04-30 12:43:57,803][678550] Rollout worker 0 uses device cpu [2023-04-30 12:43:57,803][678550] Rollout worker 1 uses device cpu [2023-04-30 12:43:57,804][678550] Rollout worker 2 uses device cpu [2023-04-30 12:43:57,804][678550] Rollout worker 3 uses device cpu [2023-04-30 12:43:57,804][678550] Rollout worker 4 uses device cpu [2023-04-30 12:43:57,804][678550] Rollout worker 5 uses device cpu [2023-04-30 12:43:57,804][678550] Rollout worker 6 uses device cpu [2023-04-30 12:43:57,804][678550] Rollout worker 7 uses device cpu [2023-04-30 12:43:57,858][678550] InferenceWorker_p0-w0: min num requests: 2 [2023-04-30 12:43:57,999][678550] Starting all processes... [2023-04-30 12:43:57,999][678550] Starting process learner_proc0 [2023-04-30 12:43:58,808][678550] Starting all processes... [2023-04-30 12:43:58,813][678550] Starting process inference_proc0-0 [2023-04-30 12:43:58,813][678550] Starting process rollout_proc0 [2023-04-30 12:43:58,814][678641] Starting seed is not provided [2023-04-30 12:43:58,814][678641] Initializing actor-critic model on device cpu [2023-04-30 12:43:58,814][678641] RunningMeanStd input shape: (3, 72, 128) [2023-04-30 12:43:58,815][678641] RunningMeanStd input shape: (1,) [2023-04-30 12:43:58,813][678550] Starting process rollout_proc1 [2023-04-30 12:43:58,814][678550] Starting process rollout_proc2 [2023-04-30 12:43:58,822][678641] ConvEncoder: input_channels=3 [2023-04-30 12:43:58,818][678550] Starting process rollout_proc3 [2023-04-30 12:43:58,820][678550] Starting process rollout_proc4 [2023-04-30 12:43:58,821][678550] Starting process rollout_proc5 [2023-04-30 12:43:58,824][678550] Starting process rollout_proc6 [2023-04-30 12:43:58,827][678550] Starting process rollout_proc7 [2023-04-30 12:43:58,928][678641] Conv encoder output size: 512 [2023-04-30 12:43:58,929][678641] Policy head output size: 512 [2023-04-30 12:43:58,948][678641] Created Actor Critic model with architecture: [2023-04-30 12:43:58,948][678641] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): VizdoomEncoder( (basic_encoder): ConvEncoder( (enc): RecursiveScriptModule( original_name=ConvEncoderImpl (conv_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Conv2d) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Conv2d) (5): RecursiveScriptModule(original_name=ELU) ) (mlp_layers): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=5, bias=True) ) ) [2023-04-30 12:43:59,297][678641] Using optimizer <class 'torch.optim.adam.Adam'> [2023-04-30 12:43:59,298][678641] No checkpoints found [2023-04-30 12:43:59,299][678641] Did not load from checkpoint, starting from scratch! [2023-04-30 12:43:59,299][678641] Initialized policy 0 weights for model version 0 [2023-04-30 12:43:59,300][678641] LearnerWorker_p0 finished initialization! [2023-04-30 12:43:59,906][678704] Worker 0 uses CPU cores [0, 1, 2] [2023-04-30 12:43:59,919][678703] RunningMeanStd input shape: (3, 72, 128) [2023-04-30 12:43:59,920][678703] RunningMeanStd input shape: (1,) [2023-04-30 12:43:59,928][678703] ConvEncoder: input_channels=3 [2023-04-30 12:43:59,932][678706] Worker 2 uses CPU cores [6, 7, 8] [2023-04-30 12:43:59,934][678711] Worker 7 uses CPU cores [21, 22, 23] [2023-04-30 12:43:59,935][678705] Worker 1 uses CPU cores [3, 4, 5] [2023-04-30 12:43:59,943][678708] Worker 4 uses CPU cores [12, 13, 14] [2023-04-30 12:43:59,948][678710] Worker 6 uses CPU cores [18, 19, 20] [2023-04-30 12:43:59,949][678707] Worker 3 uses CPU cores [9, 10, 11] [2023-04-30 12:43:59,953][678709] Worker 5 uses CPU cores [15, 16, 17] [2023-04-30 12:44:00,076][678703] Conv encoder output size: 512 [2023-04-30 12:44:00,077][678703] Policy head output size: 512 [2023-04-30 12:44:00,093][678550] Inference worker 0-0 is ready! [2023-04-30 12:44:00,093][678550] All inference workers are ready! Signal rollout workers to start! [2023-04-30 12:44:00,109][678704] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:44:00,111][678707] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:44:00,112][678705] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:44:00,113][678710] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:44:00,113][678706] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:44:00,113][678711] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:44:00,113][678708] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:44:00,121][678709] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:44:00,516][678704] Decorrelating experience for 0 frames... [2023-04-30 12:44:00,516][678707] Decorrelating experience for 0 frames... [2023-04-30 12:44:00,516][678706] Decorrelating experience for 0 frames... [2023-04-30 12:44:00,516][678708] Decorrelating experience for 0 frames... [2023-04-30 12:44:00,516][678710] Decorrelating experience for 0 frames... [2023-04-30 12:44:00,516][678705] Decorrelating experience for 0 frames... [2023-04-30 12:44:00,701][678707] Decorrelating experience for 32 frames... [2023-04-30 12:44:00,702][678704] Decorrelating experience for 32 frames... [2023-04-30 12:44:00,702][678705] Decorrelating experience for 32 frames... [2023-04-30 12:44:00,703][678710] Decorrelating experience for 32 frames... [2023-04-30 12:44:00,709][678711] Decorrelating experience for 0 frames... [2023-04-30 12:44:00,711][678706] Decorrelating experience for 32 frames... [2023-04-30 12:44:00,740][678709] Decorrelating experience for 0 frames... [2023-04-30 12:44:00,891][678708] Decorrelating experience for 32 frames... [2023-04-30 12:44:00,892][678707] Decorrelating experience for 64 frames... [2023-04-30 12:44:00,918][678704] Decorrelating experience for 64 frames... [2023-04-30 12:44:00,936][678709] Decorrelating experience for 32 frames... [2023-04-30 12:44:01,119][678711] Decorrelating experience for 32 frames... [2023-04-30 12:44:01,129][678705] Decorrelating experience for 64 frames... [2023-04-30 12:44:01,133][678706] Decorrelating experience for 64 frames... [2023-04-30 12:44:01,173][678708] Decorrelating experience for 64 frames... [2023-04-30 12:44:01,319][678710] Decorrelating experience for 64 frames... [2023-04-30 12:44:01,335][678711] Decorrelating experience for 64 frames... [2023-04-30 12:44:01,349][678704] Decorrelating experience for 96 frames... [2023-04-30 12:44:01,368][678706] Decorrelating experience for 96 frames... [2023-04-30 12:44:01,538][678710] Decorrelating experience for 96 frames... [2023-04-30 12:44:01,538][678709] Decorrelating experience for 64 frames... [2023-04-30 12:44:01,565][678708] Decorrelating experience for 96 frames... [2023-04-30 12:44:01,590][678711] Decorrelating experience for 96 frames... [2023-04-30 12:44:01,635][678704] Decorrelating experience for 128 frames... [2023-04-30 12:44:01,655][678706] Decorrelating experience for 128 frames... [2023-04-30 12:44:01,771][678705] Decorrelating experience for 96 frames... [2023-04-30 12:44:01,840][678550] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-04-30 12:44:01,857][678708] Decorrelating experience for 128 frames... [2023-04-30 12:44:01,882][678711] Decorrelating experience for 128 frames... [2023-04-30 12:44:01,931][678709] Decorrelating experience for 96 frames... [2023-04-30 12:44:01,939][678706] Decorrelating experience for 160 frames... [2023-04-30 12:44:02,000][678707] Decorrelating experience for 96 frames... [2023-04-30 12:44:02,043][678705] Decorrelating experience for 128 frames... [2023-04-30 12:44:02,044][678704] Decorrelating experience for 160 frames... [2023-04-30 12:44:02,142][678708] Decorrelating experience for 160 frames... [2023-04-30 12:44:02,239][678709] Decorrelating experience for 128 frames... [2023-04-30 12:44:02,244][678710] Decorrelating experience for 128 frames... [2023-04-30 12:44:02,265][678706] Decorrelating experience for 192 frames... [2023-04-30 12:44:02,275][678711] Decorrelating experience for 160 frames... [2023-04-30 12:44:02,335][678705] Decorrelating experience for 160 frames... [2023-04-30 12:44:02,454][678708] Decorrelating experience for 192 frames... [2023-04-30 12:44:02,491][678707] Decorrelating experience for 128 frames... [2023-04-30 12:44:02,502][678704] Decorrelating experience for 192 frames... [2023-04-30 12:44:02,528][678709] Decorrelating experience for 160 frames... [2023-04-30 12:44:02,675][678710] Decorrelating experience for 160 frames... [2023-04-30 12:44:02,721][678711] Decorrelating experience for 192 frames... [2023-04-30 12:44:02,749][678708] Decorrelating experience for 224 frames... [2023-04-30 12:44:02,749][678707] Decorrelating experience for 160 frames... [2023-04-30 12:44:02,777][678706] Decorrelating experience for 224 frames... [2023-04-30 12:44:02,865][678709] Decorrelating experience for 192 frames... [2023-04-30 12:44:02,917][678704] Decorrelating experience for 224 frames... [2023-04-30 12:44:02,984][678710] Decorrelating experience for 192 frames... [2023-04-30 12:44:03,052][678705] Decorrelating experience for 192 frames... [2023-04-30 12:44:03,056][678711] Decorrelating experience for 224 frames... [2023-04-30 12:44:03,067][678707] Decorrelating experience for 192 frames... [2023-04-30 12:44:03,308][678710] Decorrelating experience for 224 frames... [2023-04-30 12:44:03,319][678709] Decorrelating experience for 224 frames... [2023-04-30 12:44:03,354][678707] Decorrelating experience for 224 frames... [2023-04-30 12:44:03,354][678705] Decorrelating experience for 224 frames... [2023-04-30 12:44:04,423][678641] Signal inference workers to stop experience collection... [2023-04-30 12:44:04,443][678703] InferenceWorker_p0-w0: stopping experience collection [2023-04-30 12:44:05,428][678641] Signal inference workers to resume experience collection... [2023-04-30 12:44:05,429][678703] InferenceWorker_p0-w0: resuming experience collection [2023-04-30 12:44:06,840][678550] Fps is (10 sec: 819.2, 60 sec: 819.2, 300 sec: 819.2). Total num frames: 4096. Throughput: 0: 772.0. Samples: 3860. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0) [2023-04-30 12:44:06,840][678550] Avg episode reward: [(0, '1.905')] [2023-04-30 12:44:09,728][678641] Stopping Batcher_0... [2023-04-30 12:44:09,728][678641] Loop batcher_evt_loop terminating... [2023-04-30 12:44:09,734][678550] Component Batcher_0 stopped! [2023-04-30 12:44:09,741][678708] Stopping RolloutWorker_w4... [2023-04-30 12:44:09,741][678708] Loop rollout_proc4_evt_loop terminating... [2023-04-30 12:44:09,741][678550] Component RolloutWorker_w4 stopped! [2023-04-30 12:44:09,741][678706] Stopping RolloutWorker_w2... [2023-04-30 12:44:09,741][678705] Stopping RolloutWorker_w1... [2023-04-30 12:44:09,741][678550] Component RolloutWorker_w2 stopped! [2023-04-30 12:44:09,741][678550] Component RolloutWorker_w1 stopped! [2023-04-30 12:44:09,741][678706] Loop rollout_proc2_evt_loop terminating... [2023-04-30 12:44:09,742][678550] Component RolloutWorker_w3 stopped! [2023-04-30 12:44:09,742][678705] Loop rollout_proc1_evt_loop terminating... [2023-04-30 12:44:09,742][678707] Stopping RolloutWorker_w3... [2023-04-30 12:44:09,742][678550] Component RolloutWorker_w5 stopped! [2023-04-30 12:44:09,742][678709] Stopping RolloutWorker_w5... [2023-04-30 12:44:09,742][678704] Stopping RolloutWorker_w0... [2023-04-30 12:44:09,742][678550] Component RolloutWorker_w0 stopped! [2023-04-30 12:44:09,742][678711] Stopping RolloutWorker_w7... [2023-04-30 12:44:09,742][678709] Loop rollout_proc5_evt_loop terminating... [2023-04-30 12:44:09,742][678707] Loop rollout_proc3_evt_loop terminating... [2023-04-30 12:44:09,743][678704] Loop rollout_proc0_evt_loop terminating... [2023-04-30 12:44:09,743][678550] Component RolloutWorker_w7 stopped! [2023-04-30 12:44:09,743][678711] Loop rollout_proc7_evt_loop terminating... [2023-04-30 12:44:09,743][678550] Component RolloutWorker_w6 stopped! [2023-04-30 12:44:09,743][678710] Stopping RolloutWorker_w6... [2023-04-30 12:44:09,744][678710] Loop rollout_proc6_evt_loop terminating... [2023-04-30 12:44:10,050][678703] Weights refcount: 2 0 [2023-04-30 12:44:10,050][678703] Stopping InferenceWorker_p0-w0... [2023-04-30 12:44:10,051][678703] Loop inference_proc0-0_evt_loop terminating... [2023-04-30 12:44:10,051][678550] Component InferenceWorker_p0-w0 stopped! [2023-04-30 12:44:11,141][678641] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000005_20480.pth... [2023-04-30 12:44:11,164][678641] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000005_20480.pth... [2023-04-30 12:44:11,190][678641] Stopping LearnerWorker_p0... [2023-04-30 12:44:11,190][678550] Component LearnerWorker_p0 stopped! [2023-04-30 12:44:11,190][678641] Loop learner_proc0_evt_loop terminating... [2023-04-30 12:44:11,191][678550] Waiting for process learner_proc0 to stop... [2023-04-30 12:44:11,368][678550] Waiting for process inference_proc0-0 to join... [2023-04-30 12:44:11,369][678550] Waiting for process rollout_proc0 to join... [2023-04-30 12:44:11,369][678550] Waiting for process rollout_proc1 to join... [2023-04-30 12:44:11,369][678550] Waiting for process rollout_proc2 to join... [2023-04-30 12:44:11,369][678550] Waiting for process rollout_proc3 to join... [2023-04-30 12:44:11,369][678550] Waiting for process rollout_proc4 to join... [2023-04-30 12:44:11,369][678550] Waiting for process rollout_proc5 to join... [2023-04-30 12:44:11,370][678550] Waiting for process rollout_proc6 to join... [2023-04-30 12:44:11,370][678550] Waiting for process rollout_proc7 to join... [2023-04-30 12:44:11,370][678550] Batcher 0 profile tree view: batching: 0.0243, releasing_batches: 0.0008 [2023-04-30 12:44:11,370][678550] InferenceWorker_p0-w0 profile tree view: wait_policy: 0.0051 wait_policy_total: 2.8056 update_model: 0.7312 weight_update: 0.1811 one_step: 0.0370 handle_policy_step: 3.0217 deserialize: 0.0424, stack: 0.0035, obs_to_device_normalize: 0.2143, forward: 2.6394, send_messages: 0.0531 prepare_outputs: 0.0322 to_cpu: 0.0028 [2023-04-30 12:44:11,370][678550] Learner 0 profile tree view: misc: 0.0000, prepare_batch: 1.5143 train: 5.6552 epoch_init: 0.0000, minibatch_init: 0.0000, losses_postprocess: 0.0002, kl_divergence: 0.0007, after_optimizer: 0.0041 calculate_losses: 1.9942 losses_init: 0.0000, forward_head: 1.4543, bptt_initial: 0.0072, tail: 0.0036, advantages_returns: 0.0006, losses: 0.0035 bptt: 0.5243 bptt_forward_core: 0.5233 update: 3.6540 clip: 0.0070 [2023-04-30 12:44:11,370][678550] RolloutWorker_w0 profile tree view: wait_for_trajectories: 0.0006, enqueue_policy_requests: 0.0288, env_step: 0.6001, overhead: 0.0480, complete_rollouts: 0.0007 save_policy_outputs: 0.0333 split_output_tensors: 0.0154 [2023-04-30 12:44:11,371][678550] RolloutWorker_w7 profile tree view: wait_for_trajectories: 0.0006, enqueue_policy_requests: 0.0265, env_step: 0.5396, overhead: 0.0422, complete_rollouts: 0.0007 save_policy_outputs: 0.0293 split_output_tensors: 0.0137 [2023-04-30 12:44:11,371][678550] Loop Runner_EvtLoop terminating... [2023-04-30 12:44:11,371][678550] Runner profile tree view: main_loop: 13.3725 [2023-04-30 12:44:11,371][678550] Collected {0: 20480}, FPS: 1531.5 [2023-04-30 12:45:34,038][682983] Saving configuration to ./train_dir/doom_health_gathering_supreme/config.json... [2023-04-30 12:45:34,039][682983] Rollout worker 0 uses device cpu [2023-04-30 12:45:34,039][682983] Rollout worker 1 uses device cpu [2023-04-30 12:45:34,039][682983] Rollout worker 2 uses device cpu [2023-04-30 12:45:34,039][682983] Rollout worker 3 uses device cpu [2023-04-30 12:45:34,039][682983] Rollout worker 4 uses device cpu [2023-04-30 12:45:34,039][682983] Rollout worker 5 uses device cpu [2023-04-30 12:45:34,039][682983] Rollout worker 6 uses device cpu [2023-04-30 12:45:34,040][682983] Rollout worker 7 uses device cpu [2023-04-30 12:45:34,080][682983] InferenceWorker_p0-w0: min num requests: 2 [2023-04-30 12:45:34,139][682983] Starting all processes... [2023-04-30 12:45:34,139][682983] Starting process learner_proc0 [2023-04-30 12:45:34,957][682983] Starting all processes... [2023-04-30 12:45:34,961][683074] Starting seed is not provided [2023-04-30 12:45:34,961][683074] Initializing actor-critic model on device cpu [2023-04-30 12:45:34,961][682983] Starting process inference_proc0-0 [2023-04-30 12:45:34,961][683074] RunningMeanStd input shape: (3, 72, 128) [2023-04-30 12:45:34,961][682983] Starting process rollout_proc0 [2023-04-30 12:45:34,962][683074] RunningMeanStd input shape: (1,) [2023-04-30 12:45:34,962][682983] Starting process rollout_proc1 [2023-04-30 12:45:34,962][682983] Starting process rollout_proc2 [2023-04-30 12:45:34,969][683074] ConvEncoder: input_channels=3 [2023-04-30 12:45:34,963][682983] Starting process rollout_proc3 [2023-04-30 12:45:34,967][682983] Starting process rollout_proc4 [2023-04-30 12:45:34,967][682983] Starting process rollout_proc5 [2023-04-30 12:45:34,967][682983] Starting process rollout_proc6 [2023-04-30 12:45:34,968][682983] Starting process rollout_proc7 [2023-04-30 12:45:35,069][683074] Conv encoder output size: 512 [2023-04-30 12:45:35,070][683074] Policy head output size: 512 [2023-04-30 12:45:35,079][683074] Created Actor Critic model with architecture: [2023-04-30 12:45:35,079][683074] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): VizdoomEncoder( (basic_encoder): ConvEncoder( (enc): RecursiveScriptModule( original_name=ConvEncoderImpl (conv_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Conv2d) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Conv2d) (5): RecursiveScriptModule(original_name=ELU) ) (mlp_layers): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=5, bias=True) ) ) [2023-04-30 12:45:35,350][683074] Using optimizer <class 'torch.optim.adam.Adam'> [2023-04-30 12:45:35,351][683074] Loading state from checkpoint ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000005_20480.pth... [2023-04-30 12:45:35,371][683074] Loading model from checkpoint [2023-04-30 12:45:35,395][683074] Loaded experiment state at self.train_step=5, self.env_steps=20480 [2023-04-30 12:45:35,426][683074] Initialized policy 0 weights for model version 5 [2023-04-30 12:45:35,442][683074] LearnerWorker_p0 finished initialization! [2023-04-30 12:45:36,076][683138] Worker 0 uses CPU cores [0, 1, 2] [2023-04-30 12:45:36,081][683137] RunningMeanStd input shape: (3, 72, 128) [2023-04-30 12:45:36,081][683137] RunningMeanStd input shape: (1,) [2023-04-30 12:45:36,084][683139] Worker 1 uses CPU cores [3, 4, 5] [2023-04-30 12:45:36,088][683141] Worker 3 uses CPU cores [9, 10, 11] [2023-04-30 12:45:36,089][683137] ConvEncoder: input_channels=3 [2023-04-30 12:45:36,103][683149] Worker 7 uses CPU cores [21, 22, 23] [2023-04-30 12:45:36,109][683144] Worker 5 uses CPU cores [15, 16, 17] [2023-04-30 12:45:36,115][683145] Worker 6 uses CPU cores [18, 19, 20] [2023-04-30 12:45:36,118][683142] Worker 4 uses CPU cores [12, 13, 14] [2023-04-30 12:45:36,119][683140] Worker 2 uses CPU cores [6, 7, 8] [2023-04-30 12:45:36,217][683137] Conv encoder output size: 512 [2023-04-30 12:45:36,218][683137] Policy head output size: 512 [2023-04-30 12:45:36,229][682983] Inference worker 0-0 is ready! [2023-04-30 12:45:36,229][682983] All inference workers are ready! Signal rollout workers to start! [2023-04-30 12:45:36,241][683138] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:45:36,242][683145] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:45:36,242][683149] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:45:36,243][683144] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:45:36,243][683141] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:45:36,260][683142] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:45:36,270][683140] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:45:36,276][683139] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-30 12:45:36,481][683149] Decorrelating experience for 0 frames... [2023-04-30 12:45:36,487][683138] Decorrelating experience for 0 frames... [2023-04-30 12:45:36,497][683144] Decorrelating experience for 0 frames... [2023-04-30 12:45:36,501][683145] Decorrelating experience for 0 frames... [2023-04-30 12:45:36,698][683149] Decorrelating experience for 32 frames... [2023-04-30 12:45:36,704][683139] Decorrelating experience for 0 frames... [2023-04-30 12:45:36,745][683144] Decorrelating experience for 32 frames... [2023-04-30 12:45:36,755][683141] Decorrelating experience for 0 frames... [2023-04-30 12:45:36,758][683140] Decorrelating experience for 0 frames... [2023-04-30 12:45:36,907][683139] Decorrelating experience for 32 frames... [2023-04-30 12:45:36,940][683144] Decorrelating experience for 64 frames... [2023-04-30 12:45:36,940][683141] Decorrelating experience for 32 frames... [2023-04-30 12:45:36,940][683145] Decorrelating experience for 32 frames... [2023-04-30 12:45:36,973][683149] Decorrelating experience for 64 frames... [2023-04-30 12:45:37,117][683140] Decorrelating experience for 32 frames... [2023-04-30 12:45:37,142][683139] Decorrelating experience for 64 frames... [2023-04-30 12:45:37,185][683145] Decorrelating experience for 64 frames... [2023-04-30 12:45:37,195][683144] Decorrelating experience for 96 frames... [2023-04-30 12:45:37,197][683149] Decorrelating experience for 96 frames... [2023-04-30 12:45:37,198][683138] Decorrelating experience for 32 frames... [2023-04-30 12:45:37,335][683140] Decorrelating experience for 64 frames... [2023-04-30 12:45:37,379][683139] Decorrelating experience for 96 frames... [2023-04-30 12:45:37,404][683142] Decorrelating experience for 0 frames... [2023-04-30 12:45:37,431][683145] Decorrelating experience for 96 frames... [2023-04-30 12:45:37,469][683149] Decorrelating experience for 128 frames... [2023-04-30 12:45:37,555][683140] Decorrelating experience for 96 frames... [2023-04-30 12:45:37,555][683138] Decorrelating experience for 64 frames... [2023-04-30 12:45:37,592][683144] Decorrelating experience for 128 frames... [2023-04-30 12:45:37,592][683142] Decorrelating experience for 32 frames... [2023-04-30 12:45:37,781][683149] Decorrelating experience for 160 frames... [2023-04-30 12:45:37,781][683138] Decorrelating experience for 96 frames... [2023-04-30 12:45:37,785][683139] Decorrelating experience for 128 frames... [2023-04-30 12:45:37,786][683145] Decorrelating experience for 128 frames... [2023-04-30 12:45:37,831][683141] Decorrelating experience for 64 frames... [2023-04-30 12:45:38,044][682983] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 20480. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-04-30 12:45:38,049][683144] Decorrelating experience for 160 frames... [2023-04-30 12:45:38,061][683140] Decorrelating experience for 128 frames... [2023-04-30 12:45:38,067][683138] Decorrelating experience for 128 frames... [2023-04-30 12:45:38,088][683145] Decorrelating experience for 160 frames... [2023-04-30 12:45:38,101][683139] Decorrelating experience for 160 frames... [2023-04-30 12:45:38,110][683141] Decorrelating experience for 96 frames... [2023-04-30 12:45:38,271][683142] Decorrelating experience for 64 frames... [2023-04-30 12:45:38,324][683140] Decorrelating experience for 160 frames... [2023-04-30 12:45:38,325][683138] Decorrelating experience for 160 frames... [2023-04-30 12:45:38,371][683144] Decorrelating experience for 192 frames... [2023-04-30 12:45:38,385][683145] Decorrelating experience for 192 frames... [2023-04-30 12:45:38,403][683141] Decorrelating experience for 128 frames... [2023-04-30 12:45:38,504][683142] Decorrelating experience for 96 frames... [2023-04-30 12:45:38,522][683149] Decorrelating experience for 192 frames... [2023-04-30 12:45:38,596][683139] Decorrelating experience for 192 frames... [2023-04-30 12:45:38,615][683138] Decorrelating experience for 192 frames... [2023-04-30 12:45:38,674][683141] Decorrelating experience for 160 frames... [2023-04-30 12:45:38,796][683142] Decorrelating experience for 128 frames... [2023-04-30 12:45:38,815][683149] Decorrelating experience for 224 frames... [2023-04-30 12:45:38,815][683140] Decorrelating experience for 192 frames... [2023-04-30 12:45:38,905][683139] Decorrelating experience for 224 frames... [2023-04-30 12:45:38,979][683141] Decorrelating experience for 192 frames... [2023-04-30 12:45:39,050][683138] Decorrelating experience for 224 frames... [2023-04-30 12:45:39,067][683145] Decorrelating experience for 224 frames... [2023-04-30 12:45:39,095][683144] Decorrelating experience for 224 frames... [2023-04-30 12:45:39,137][683142] Decorrelating experience for 160 frames... [2023-04-30 12:45:39,138][683140] Decorrelating experience for 224 frames... [2023-04-30 12:45:39,308][683141] Decorrelating experience for 224 frames... [2023-04-30 12:45:39,424][683142] Decorrelating experience for 192 frames... [2023-04-30 12:45:39,711][683142] Decorrelating experience for 224 frames... [2023-04-30 12:45:40,485][683074] Signal inference workers to stop experience collection... [2023-04-30 12:45:40,505][683137] InferenceWorker_p0-w0: stopping experience collection [2023-04-30 12:45:41,493][683074] Signal inference workers to resume experience collection... [2023-04-30 12:45:41,494][683137] InferenceWorker_p0-w0: resuming experience collection [2023-04-30 12:45:43,044][682983] Fps is (10 sec: 819.2, 60 sec: 819.2, 300 sec: 819.2). Total num frames: 24576. Throughput: 0: 784.0. Samples: 3920. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0) [2023-04-30 12:45:43,045][682983] Avg episode reward: [(0, '1.796')] [2023-04-30 12:45:48,044][682983] Fps is (10 sec: 2048.0, 60 sec: 2048.0, 300 sec: 2048.0). Total num frames: 40960. Throughput: 0: 616.0. Samples: 6160. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:45:48,044][682983] Avg episode reward: [(0, '3.036')] [2023-04-30 12:45:53,044][682983] Fps is (10 sec: 3276.8, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 57344. Throughput: 0: 685.9. Samples: 10288. Policy #0 lag: (min: 1.0, avg: 1.8, max: 3.0) [2023-04-30 12:45:53,044][682983] Avg episode reward: [(0, '3.679')] [2023-04-30 12:45:54,030][683137] Updated weights for policy 0, policy_version 15 (0.1495) [2023-04-30 12:45:54,076][682983] Heartbeat connected on Batcher_0 [2023-04-30 12:45:54,082][682983] Heartbeat connected on RolloutWorker_w0 [2023-04-30 12:45:54,084][682983] Heartbeat connected on RolloutWorker_w1 [2023-04-30 12:45:54,086][682983] Heartbeat connected on RolloutWorker_w2 [2023-04-30 12:45:54,087][682983] Heartbeat connected on RolloutWorker_w3 [2023-04-30 12:45:54,089][682983] Heartbeat connected on RolloutWorker_w4 [2023-04-30 12:45:54,091][682983] Heartbeat connected on RolloutWorker_w5 [2023-04-30 12:45:54,092][682983] Heartbeat connected on RolloutWorker_w6 [2023-04-30 12:45:54,101][682983] Heartbeat connected on InferenceWorker_p0-w0 [2023-04-30 12:45:54,138][682983] Heartbeat connected on RolloutWorker_w7 [2023-04-30 12:45:56,743][682983] Heartbeat connected on LearnerWorker_p0 [2023-04-30 12:45:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 69632. Throughput: 0: 759.4. Samples: 15188. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:45:58,044][682983] Avg episode reward: [(0, '4.419')] [2023-04-30 12:46:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2621.4, 300 sec: 2621.4). Total num frames: 86016. Throughput: 0: 689.9. Samples: 17248. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:46:03,045][682983] Avg episode reward: [(0, '4.396')] [2023-04-30 12:46:08,044][682983] Fps is (10 sec: 3276.8, 60 sec: 2730.7, 300 sec: 2730.7). Total num frames: 102400. Throughput: 0: 710.4. Samples: 21312. Policy #0 lag: (min: 1.0, avg: 1.8, max: 3.0) [2023-04-30 12:46:08,044][682983] Avg episode reward: [(0, '4.337')] [2023-04-30 12:46:08,115][683137] Updated weights for policy 0, policy_version 25 (0.0839) [2023-04-30 12:46:09,338][683074] Saving new best policy, reward=4.337! [2023-04-30 12:46:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2691.7, 300 sec: 2691.7). Total num frames: 114688. Throughput: 0: 737.0. Samples: 25796. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:46:13,044][682983] Avg episode reward: [(0, '4.517')] [2023-04-30 12:46:14,840][683074] Saving new best policy, reward=4.517! [2023-04-30 12:46:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2764.8, 300 sec: 2764.8). Total num frames: 131072. Throughput: 0: 707.9. Samples: 28316. Policy #0 lag: (min: 1.0, avg: 1.8, max: 3.0) [2023-04-30 12:46:18,044][682983] Avg episode reward: [(0, '4.532')] [2023-04-30 12:46:18,990][683074] Saving new best policy, reward=4.532! [2023-04-30 12:46:21,984][683137] Updated weights for policy 0, policy_version 35 (0.0410) [2023-04-30 12:46:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2730.7, 300 sec: 2730.7). Total num frames: 143360. Throughput: 0: 729.9. Samples: 32844. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:46:23,045][682983] Avg episode reward: [(0, '4.647')] [2023-04-30 12:46:24,537][683074] Saving new best policy, reward=4.647! [2023-04-30 12:46:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2785.3, 300 sec: 2785.3). Total num frames: 159744. Throughput: 0: 734.3. Samples: 36964. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 12:46:28,044][682983] Avg episode reward: [(0, '4.552')] [2023-04-30 12:46:33,044][682983] Fps is (10 sec: 3276.8, 60 sec: 2830.0, 300 sec: 2830.0). Total num frames: 176128. Throughput: 0: 731.1. Samples: 39060. Policy #0 lag: (min: 1.0, avg: 1.8, max: 3.0) [2023-04-30 12:46:33,044][682983] Avg episode reward: [(0, '4.594')] [2023-04-30 12:46:35,701][683137] Updated weights for policy 0, policy_version 45 (0.1014) [2023-04-30 12:46:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2798.9, 300 sec: 2798.9). Total num frames: 188416. Throughput: 0: 746.7. Samples: 43888. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 12:46:38,044][682983] Avg episode reward: [(0, '4.432')] [2023-04-30 12:46:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2835.7). Total num frames: 204800. Throughput: 0: 729.8. Samples: 48028. Policy #0 lag: (min: 1.0, avg: 1.8, max: 3.0) [2023-04-30 12:46:43,044][682983] Avg episode reward: [(0, '4.388')] [2023-04-30 12:46:48,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2867.2). Total num frames: 221184. Throughput: 0: 737.7. Samples: 50444. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:46:48,045][682983] Avg episode reward: [(0, '4.381')] [2023-04-30 12:46:49,451][683137] Updated weights for policy 0, policy_version 55 (0.0613) [2023-04-30 12:46:49,856][683074] Signal inference workers to stop experience collection... (50 times) [2023-04-30 12:46:49,880][683137] InferenceWorker_p0-w0: stopping experience collection (50 times) [2023-04-30 12:46:50,622][683074] Signal inference workers to resume experience collection... (50 times) [2023-04-30 12:46:50,622][683137] InferenceWorker_p0-w0: resuming experience collection (50 times) [2023-04-30 12:46:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2839.9). Total num frames: 233472. Throughput: 0: 752.2. Samples: 55160. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 12:46:53,044][682983] Avg episode reward: [(0, '4.521')] [2023-04-30 12:46:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2867.2). Total num frames: 249856. Throughput: 0: 748.9. Samples: 59496. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:46:58,044][682983] Avg episode reward: [(0, '4.531')] [2023-04-30 12:47:03,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2891.3). Total num frames: 266240. Throughput: 0: 739.8. Samples: 61608. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 12:47:03,044][682983] Avg episode reward: [(0, '4.595')] [2023-04-30 12:47:03,122][683137] Updated weights for policy 0, policy_version 65 (0.1207) [2023-04-30 12:47:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2867.2). Total num frames: 278528. Throughput: 0: 748.1. Samples: 66508. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:47:08,044][682983] Avg episode reward: [(0, '4.550')] [2023-04-30 12:47:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2888.8). Total num frames: 294912. Throughput: 0: 748.4. Samples: 70644. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:47:13,044][682983] Avg episode reward: [(0, '4.613')] [2023-04-30 12:47:16,479][683137] Updated weights for policy 0, policy_version 75 (0.0409) [2023-04-30 12:47:18,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2908.2). Total num frames: 311296. Throughput: 0: 753.7. Samples: 72976. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:47:18,044][682983] Avg episode reward: [(0, '4.541')] [2023-04-30 12:47:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2886.7). Total num frames: 323584. Throughput: 0: 757.2. Samples: 77960. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:47:23,044][682983] Avg episode reward: [(0, '4.580')] [2023-04-30 12:47:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2904.4). Total num frames: 339968. Throughput: 0: 756.4. Samples: 82068. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:47:28,044][682983] Avg episode reward: [(0, '4.510')] [2023-04-30 12:47:30,039][683137] Updated weights for policy 0, policy_version 85 (0.0411) [2023-04-30 12:47:33,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2920.6). Total num frames: 356352. Throughput: 0: 758.0. Samples: 84552. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:47:33,044][682983] Avg episode reward: [(0, '4.608')] [2023-04-30 12:47:34,084][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000088_360448.pth... [2023-04-30 12:47:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2901.3). Total num frames: 368640. Throughput: 0: 751.5. Samples: 88976. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:47:38,045][682983] Avg episode reward: [(0, '4.517')] [2023-04-30 12:47:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2916.4). Total num frames: 385024. Throughput: 0: 745.7. Samples: 93052. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 12:47:43,044][682983] Avg episode reward: [(0, '4.462')] [2023-04-30 12:47:43,749][683137] Updated weights for policy 0, policy_version 95 (0.0606) [2023-04-30 12:47:48,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2930.2). Total num frames: 401408. Throughput: 0: 751.3. Samples: 95416. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:47:48,044][682983] Avg episode reward: [(0, '4.606')] [2023-04-30 12:47:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2912.7). Total num frames: 413696. Throughput: 0: 754.9. Samples: 100480. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 12:47:53,044][682983] Avg episode reward: [(0, '4.601')] [2023-04-30 12:47:57,422][683137] Updated weights for policy 0, policy_version 105 (0.0408) [2023-04-30 12:47:57,749][683074] Signal inference workers to stop experience collection... (100 times) [2023-04-30 12:47:57,772][683137] InferenceWorker_p0-w0: stopping experience collection (100 times) [2023-04-30 12:47:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2925.7). Total num frames: 430080. Throughput: 0: 754.7. Samples: 104604. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 12:47:58,044][682983] Avg episode reward: [(0, '4.597')] [2023-04-30 12:47:58,760][683074] Signal inference workers to resume experience collection... (100 times) [2023-04-30 12:47:58,761][683137] InferenceWorker_p0-w0: resuming experience collection (100 times) [2023-04-30 12:48:03,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2937.8). Total num frames: 446464. Throughput: 0: 750.0. Samples: 106724. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:48:03,044][682983] Avg episode reward: [(0, '4.543')] [2023-04-30 12:48:08,044][682983] Fps is (10 sec: 2867.1, 60 sec: 3003.7, 300 sec: 2921.8). Total num frames: 458752. Throughput: 0: 747.2. Samples: 111584. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:48:08,045][682983] Avg episode reward: [(0, '4.516')] [2023-04-30 12:48:11,302][683137] Updated weights for policy 0, policy_version 115 (0.0814) [2023-04-30 12:48:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2933.3). Total num frames: 475136. Throughput: 0: 746.0. Samples: 115636. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:48:13,044][682983] Avg episode reward: [(0, '4.398')] [2023-04-30 12:48:18,044][682983] Fps is (10 sec: 3276.9, 60 sec: 3003.7, 300 sec: 2944.0). Total num frames: 491520. Throughput: 0: 736.6. Samples: 117700. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:48:18,044][682983] Avg episode reward: [(0, '4.413')] [2023-04-30 12:48:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2929.3). Total num frames: 503808. Throughput: 0: 754.4. Samples: 122924. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:48:23,044][682983] Avg episode reward: [(0, '4.453')] [2023-04-30 12:48:24,751][683137] Updated weights for policy 0, policy_version 125 (0.0214) [2023-04-30 12:48:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2939.5). Total num frames: 520192. Throughput: 0: 755.1. Samples: 127032. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:48:28,044][682983] Avg episode reward: [(0, '4.499')] [2023-04-30 12:48:33,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2949.1). Total num frames: 536576. Throughput: 0: 752.6. Samples: 129284. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:48:33,044][682983] Avg episode reward: [(0, '4.464')] [2023-04-30 12:48:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2935.5). Total num frames: 548864. Throughput: 0: 744.0. Samples: 133960. Policy #0 lag: (min: 1.0, avg: 1.8, max: 3.0) [2023-04-30 12:48:38,044][682983] Avg episode reward: [(0, '4.435')] [2023-04-30 12:48:38,317][683137] Updated weights for policy 0, policy_version 135 (0.1005) [2023-04-30 12:48:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2944.7). Total num frames: 565248. Throughput: 0: 744.3. Samples: 138096. Policy #0 lag: (min: 1.0, avg: 1.8, max: 3.0) [2023-04-30 12:48:43,044][682983] Avg episode reward: [(0, '4.505')] [2023-04-30 12:48:48,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2953.4). Total num frames: 581632. Throughput: 0: 748.4. Samples: 140404. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:48:48,044][682983] Avg episode reward: [(0, '4.554')] [2023-04-30 12:48:52,091][683137] Updated weights for policy 0, policy_version 145 (0.0613) [2023-04-30 12:48:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2940.7). Total num frames: 593920. Throughput: 0: 753.0. Samples: 145468. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:48:53,044][682983] Avg episode reward: [(0, '4.515')] [2023-04-30 12:48:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2949.1). Total num frames: 610304. Throughput: 0: 754.0. Samples: 149564. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:48:58,045][682983] Avg episode reward: [(0, '4.678')] [2023-04-30 12:49:00,070][683074] Saving new best policy, reward=4.678! [2023-04-30 12:49:03,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2957.1). Total num frames: 626688. Throughput: 0: 763.2. Samples: 152044. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:49:03,045][682983] Avg episode reward: [(0, '4.617')] [2023-04-30 12:49:05,532][683137] Updated weights for policy 0, policy_version 155 (0.0806) [2023-04-30 12:49:05,871][683074] Signal inference workers to stop experience collection... (150 times) [2023-04-30 12:49:05,892][683137] InferenceWorker_p0-w0: stopping experience collection (150 times) [2023-04-30 12:49:06,865][683074] Signal inference workers to resume experience collection... (150 times) [2023-04-30 12:49:06,865][683137] InferenceWorker_p0-w0: resuming experience collection (150 times) [2023-04-30 12:49:08,044][682983] Fps is (10 sec: 2867.3, 60 sec: 3003.7, 300 sec: 2945.2). Total num frames: 638976. Throughput: 0: 747.5. Samples: 156560. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:49:08,044][682983] Avg episode reward: [(0, '4.339')] [2023-04-30 12:49:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2952.9). Total num frames: 655360. Throughput: 0: 747.6. Samples: 160676. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:49:13,044][682983] Avg episode reward: [(0, '4.342')] [2023-04-30 12:49:18,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2960.3). Total num frames: 671744. Throughput: 0: 748.9. Samples: 162984. Policy #0 lag: (min: 1.0, avg: 1.9, max: 3.0) [2023-04-30 12:49:18,045][682983] Avg episode reward: [(0, '4.469')] [2023-04-30 12:49:19,236][683137] Updated weights for policy 0, policy_version 165 (0.0610) [2023-04-30 12:49:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2949.1). Total num frames: 684032. Throughput: 0: 754.4. Samples: 167908. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:49:23,044][682983] Avg episode reward: [(0, '4.478')] [2023-04-30 12:49:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2956.2). Total num frames: 700416. Throughput: 0: 754.9. Samples: 172068. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:49:28,044][682983] Avg episode reward: [(0, '4.447')] [2023-04-30 12:49:33,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2963.1). Total num frames: 716800. Throughput: 0: 755.5. Samples: 174400. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:49:33,045][682983] Avg episode reward: [(0, '4.556')] [2023-04-30 12:49:33,045][683137] Updated weights for policy 0, policy_version 175 (0.1202) [2023-04-30 12:49:34,206][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000176_720896.pth... [2023-04-30 12:49:34,229][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000005_20480.pth [2023-04-30 12:49:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2952.5). Total num frames: 729088. Throughput: 0: 750.7. Samples: 179248. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:49:38,044][682983] Avg episode reward: [(0, '4.596')] [2023-04-30 12:49:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2959.2). Total num frames: 745472. Throughput: 0: 751.1. Samples: 183364. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:49:43,044][682983] Avg episode reward: [(0, '4.718')] [2023-04-30 12:49:45,166][683074] Saving new best policy, reward=4.718! [2023-04-30 12:49:46,754][683137] Updated weights for policy 0, policy_version 185 (0.0422) [2023-04-30 12:49:48,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2965.5). Total num frames: 761856. Throughput: 0: 744.6. Samples: 185552. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:49:48,044][682983] Avg episode reward: [(0, '4.742')] [2023-04-30 12:49:49,242][683074] Saving new best policy, reward=4.742! [2023-04-30 12:49:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2955.5). Total num frames: 774144. Throughput: 0: 753.5. Samples: 190468. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:49:53,044][682983] Avg episode reward: [(0, '4.708')] [2023-04-30 12:49:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2961.7). Total num frames: 790528. Throughput: 0: 754.8. Samples: 194640. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:49:58,044][682983] Avg episode reward: [(0, '4.632')] [2023-04-30 12:50:00,153][683137] Updated weights for policy 0, policy_version 195 (0.0414) [2023-04-30 12:50:03,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2967.7). Total num frames: 806912. Throughput: 0: 753.2. Samples: 196876. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:50:03,044][682983] Avg episode reward: [(0, '4.682')] [2023-04-30 12:50:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2958.2). Total num frames: 819200. Throughput: 0: 753.2. Samples: 201800. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:50:08,044][682983] Avg episode reward: [(0, '4.626')] [2023-04-30 12:50:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2964.0). Total num frames: 835584. Throughput: 0: 751.4. Samples: 205880. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:50:13,044][682983] Avg episode reward: [(0, '4.827')] [2023-04-30 12:50:13,785][683137] Updated weights for policy 0, policy_version 205 (0.0413) [2023-04-30 12:50:14,272][683074] Signal inference workers to stop experience collection... (200 times) [2023-04-30 12:50:14,295][683137] InferenceWorker_p0-w0: stopping experience collection (200 times) [2023-04-30 12:50:15,184][683074] Signal inference workers to resume experience collection... (200 times) [2023-04-30 12:50:15,184][683074] Saving new best policy, reward=4.827! [2023-04-30 12:50:15,185][683137] InferenceWorker_p0-w0: resuming experience collection (200 times) [2023-04-30 12:50:18,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2969.6). Total num frames: 851968. Throughput: 0: 748.1. Samples: 208064. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:50:18,044][682983] Avg episode reward: [(0, '4.745')] [2023-04-30 12:50:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2960.6). Total num frames: 864256. Throughput: 0: 744.4. Samples: 212744. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:50:23,044][682983] Avg episode reward: [(0, '4.879')] [2023-04-30 12:50:24,786][683074] Saving new best policy, reward=4.879! [2023-04-30 12:50:27,549][683137] Updated weights for policy 0, policy_version 215 (0.0813) [2023-04-30 12:50:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2966.1). Total num frames: 880640. Throughput: 0: 753.0. Samples: 217248. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:50:28,044][682983] Avg episode reward: [(0, '4.850')] [2023-04-30 12:50:33,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2971.3). Total num frames: 897024. Throughput: 0: 749.5. Samples: 219280. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:50:33,044][682983] Avg episode reward: [(0, '4.836')] [2023-04-30 12:50:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 909312. Throughput: 0: 750.9. Samples: 224260. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:50:38,044][682983] Avg episode reward: [(0, '5.016')] [2023-04-30 12:50:39,740][683074] Saving new best policy, reward=5.016! [2023-04-30 12:50:41,149][683137] Updated weights for policy 0, policy_version 225 (0.0609) [2023-04-30 12:50:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 925696. Throughput: 0: 749.5. Samples: 228368. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:50:43,044][682983] Avg episode reward: [(0, '4.806')] [2023-04-30 12:50:48,044][682983] Fps is (10 sec: 3276.7, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 942080. Throughput: 0: 745.7. Samples: 230432. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:50:48,045][682983] Avg episode reward: [(0, '4.703')] [2023-04-30 12:50:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 954368. Throughput: 0: 741.8. Samples: 235180. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:50:53,044][682983] Avg episode reward: [(0, '4.671')] [2023-04-30 12:50:54,910][683137] Updated weights for policy 0, policy_version 235 (0.0817) [2023-04-30 12:50:58,044][682983] Fps is (10 sec: 2867.3, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 970752. Throughput: 0: 751.2. Samples: 239684. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:50:58,044][682983] Avg episode reward: [(0, '4.748')] [2023-04-30 12:51:03,044][682983] Fps is (10 sec: 3276.7, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 987136. Throughput: 0: 747.6. Samples: 241704. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:51:03,045][682983] Avg episode reward: [(0, '4.837')] [2023-04-30 12:51:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 999424. Throughput: 0: 753.6. Samples: 246656. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:51:08,044][682983] Avg episode reward: [(0, '4.646')] [2023-04-30 12:51:08,584][683137] Updated weights for policy 0, policy_version 245 (0.1015) [2023-04-30 12:51:13,044][682983] Fps is (10 sec: 2867.3, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1015808. Throughput: 0: 747.6. Samples: 250888. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:51:13,044][682983] Avg episode reward: [(0, '4.586')] [2023-04-30 12:51:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 1028096. Throughput: 0: 747.6. Samples: 252924. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:51:18,044][682983] Avg episode reward: [(0, '4.674')] [2023-04-30 12:51:22,505][683137] Updated weights for policy 0, policy_version 255 (0.1620) [2023-04-30 12:51:22,914][683074] Signal inference workers to stop experience collection... (250 times) [2023-04-30 12:51:22,934][683137] InferenceWorker_p0-w0: stopping experience collection (250 times) [2023-04-30 12:51:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1044480. Throughput: 0: 735.7. Samples: 257368. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:51:23,044][682983] Avg episode reward: [(0, '4.714')] [2023-04-30 12:51:23,675][683074] Signal inference workers to resume experience collection... (250 times) [2023-04-30 12:51:23,675][683137] InferenceWorker_p0-w0: resuming experience collection (250 times) [2023-04-30 12:51:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1060864. Throughput: 0: 751.4. Samples: 262180. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:51:28,044][682983] Avg episode reward: [(0, '4.826')] [2023-04-30 12:51:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 1073152. Throughput: 0: 750.2. Samples: 264192. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:51:33,044][682983] Avg episode reward: [(0, '4.848')] [2023-04-30 12:51:34,628][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000264_1081344.pth... [2023-04-30 12:51:34,652][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000088_360448.pth [2023-04-30 12:51:36,018][683137] Updated weights for policy 0, policy_version 265 (0.1428) [2023-04-30 12:51:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1089536. Throughput: 0: 748.1. Samples: 268844. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:51:38,044][682983] Avg episode reward: [(0, '4.826')] [2023-04-30 12:51:43,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1105920. Throughput: 0: 750.0. Samples: 273436. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:51:43,044][682983] Avg episode reward: [(0, '4.918')] [2023-04-30 12:51:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 1118208. Throughput: 0: 751.0. Samples: 275500. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:51:48,045][682983] Avg episode reward: [(0, '5.068')] [2023-04-30 12:51:49,648][683074] Saving new best policy, reward=5.068! [2023-04-30 12:51:49,650][683137] Updated weights for policy 0, policy_version 275 (0.0210) [2023-04-30 12:51:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1134592. Throughput: 0: 744.5. Samples: 280160. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:51:53,044][682983] Avg episode reward: [(0, '5.125')] [2023-04-30 12:51:55,065][683074] Saving new best policy, reward=5.125! [2023-04-30 12:51:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1150976. Throughput: 0: 751.6. Samples: 284712. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:51:58,045][682983] Avg episode reward: [(0, '5.239')] [2023-04-30 12:51:59,156][683074] Saving new best policy, reward=5.239! [2023-04-30 12:52:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 1163264. Throughput: 0: 752.4. Samples: 286780. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:52:03,045][682983] Avg episode reward: [(0, '5.155')] [2023-04-30 12:52:03,447][683137] Updated weights for policy 0, policy_version 285 (0.0602) [2023-04-30 12:52:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1179648. Throughput: 0: 748.1. Samples: 291032. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:52:08,044][682983] Avg episode reward: [(0, '5.415')] [2023-04-30 12:52:10,023][683074] Saving new best policy, reward=5.415! [2023-04-30 12:52:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1196032. Throughput: 0: 751.9. Samples: 296016. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:52:13,044][682983] Avg episode reward: [(0, '5.217')] [2023-04-30 12:52:16,848][683137] Updated weights for policy 0, policy_version 295 (0.0811) [2023-04-30 12:52:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1208320. Throughput: 0: 753.1. Samples: 298080. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:52:18,044][682983] Avg episode reward: [(0, '5.206')] [2023-04-30 12:52:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1224704. Throughput: 0: 746.6. Samples: 302440. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:52:23,044][682983] Avg episode reward: [(0, '5.253')] [2023-04-30 12:52:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1241088. Throughput: 0: 750.8. Samples: 307224. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:52:28,044][682983] Avg episode reward: [(0, '5.301')] [2023-04-30 12:52:30,677][683137] Updated weights for policy 0, policy_version 305 (0.0817) [2023-04-30 12:52:31,162][683074] Signal inference workers to stop experience collection... (300 times) [2023-04-30 12:52:31,182][683137] InferenceWorker_p0-w0: stopping experience collection (300 times) [2023-04-30 12:52:31,828][683074] Signal inference workers to resume experience collection... (300 times) [2023-04-30 12:52:31,828][683137] InferenceWorker_p0-w0: resuming experience collection (300 times) [2023-04-30 12:52:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1253376. Throughput: 0: 750.2. Samples: 309260. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:52:33,044][682983] Avg episode reward: [(0, '5.249')] [2023-04-30 12:52:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1269760. Throughput: 0: 754.3. Samples: 314104. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:52:38,044][682983] Avg episode reward: [(0, '5.004')] [2023-04-30 12:52:43,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1286144. Throughput: 0: 753.2. Samples: 318604. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:52:43,044][682983] Avg episode reward: [(0, '5.045')] [2023-04-30 12:52:44,046][683137] Updated weights for policy 0, policy_version 315 (0.0601) [2023-04-30 12:52:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1298432. Throughput: 0: 752.8. Samples: 320656. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:52:48,044][682983] Avg episode reward: [(0, '5.310')] [2023-04-30 12:52:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1314816. Throughput: 0: 768.7. Samples: 325624. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:52:53,044][682983] Avg episode reward: [(0, '5.363')] [2023-04-30 12:52:57,551][683137] Updated weights for policy 0, policy_version 325 (0.0429) [2023-04-30 12:52:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1331200. Throughput: 0: 748.9. Samples: 329716. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:52:58,044][682983] Avg episode reward: [(0, '5.291')] [2023-04-30 12:53:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1343488. Throughput: 0: 748.3. Samples: 331752. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:53:03,044][682983] Avg episode reward: [(0, '5.053')] [2023-04-30 12:53:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1359872. Throughput: 0: 763.5. Samples: 336796. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:53:08,044][682983] Avg episode reward: [(0, '4.972')] [2023-04-30 12:53:11,249][683137] Updated weights for policy 0, policy_version 335 (0.0454) [2023-04-30 12:53:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1376256. Throughput: 0: 755.7. Samples: 341232. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:53:13,044][682983] Avg episode reward: [(0, '4.880')] [2023-04-30 12:53:18,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3072.0, 300 sec: 3013.0). Total num frames: 1392640. Throughput: 0: 756.0. Samples: 343280. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:53:18,044][682983] Avg episode reward: [(0, '4.801')] [2023-04-30 12:53:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1404928. Throughput: 0: 752.9. Samples: 347984. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:53:23,044][682983] Avg episode reward: [(0, '5.042')] [2023-04-30 12:53:24,765][683137] Updated weights for policy 0, policy_version 345 (0.0415) [2023-04-30 12:53:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1421312. Throughput: 0: 743.2. Samples: 352048. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:53:28,044][682983] Avg episode reward: [(0, '5.282')] [2023-04-30 12:53:33,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3072.0, 300 sec: 3013.0). Total num frames: 1437696. Throughput: 0: 742.1. Samples: 354052. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:53:33,044][682983] Avg episode reward: [(0, '5.448')] [2023-04-30 12:53:34,319][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000352_1441792.pth... [2023-04-30 12:53:34,341][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000176_720896.pth [2023-04-30 12:53:34,344][683074] Saving new best policy, reward=5.448! [2023-04-30 12:53:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1449984. Throughput: 0: 747.9. Samples: 359280. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:53:38,044][682983] Avg episode reward: [(0, '5.482')] [2023-04-30 12:53:38,485][683137] Updated weights for policy 0, policy_version 355 (0.0409) [2023-04-30 12:53:39,146][683074] Signal inference workers to stop experience collection... (350 times) [2023-04-30 12:53:39,165][683137] InferenceWorker_p0-w0: stopping experience collection (350 times) [2023-04-30 12:53:39,866][683074] Signal inference workers to resume experience collection... (350 times) [2023-04-30 12:53:39,866][683074] Saving new best policy, reward=5.482! [2023-04-30 12:53:39,866][683137] InferenceWorker_p0-w0: resuming experience collection (350 times) [2023-04-30 12:53:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1466368. Throughput: 0: 757.7. Samples: 363812. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:53:43,045][682983] Avg episode reward: [(0, '5.618')] [2023-04-30 12:53:45,355][683074] Saving new best policy, reward=5.618! [2023-04-30 12:53:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1478656. Throughput: 0: 757.0. Samples: 365816. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:53:48,044][682983] Avg episode reward: [(0, '5.825')] [2023-04-30 12:53:49,444][683074] Saving new best policy, reward=5.825! [2023-04-30 12:53:52,366][683137] Updated weights for policy 0, policy_version 365 (0.1196) [2023-04-30 12:53:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1495040. Throughput: 0: 745.8. Samples: 370356. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:53:53,045][682983] Avg episode reward: [(0, '5.970')] [2023-04-30 12:53:54,847][683074] Saving new best policy, reward=5.970! [2023-04-30 12:53:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1511424. Throughput: 0: 741.2. Samples: 374588. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:53:58,044][682983] Avg episode reward: [(0, '5.866')] [2023-04-30 12:54:03,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3072.0, 300 sec: 3013.0). Total num frames: 1527808. Throughput: 0: 741.8. Samples: 376660. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:54:03,045][682983] Avg episode reward: [(0, '6.063')] [2023-04-30 12:54:04,424][683074] Saving new best policy, reward=6.063! [2023-04-30 12:54:05,786][683137] Updated weights for policy 0, policy_version 375 (0.0217) [2023-04-30 12:54:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1540096. Throughput: 0: 751.2. Samples: 381788. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:08,044][682983] Avg episode reward: [(0, '5.935')] [2023-04-30 12:54:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1556480. Throughput: 0: 763.1. Samples: 386388. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:54:13,044][682983] Avg episode reward: [(0, '6.127')] [2023-04-30 12:54:15,286][683074] Saving new best policy, reward=6.127! [2023-04-30 12:54:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 1568768. Throughput: 0: 764.4. Samples: 388448. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:18,044][682983] Avg episode reward: [(0, '6.191')] [2023-04-30 12:54:19,419][683074] Saving new best policy, reward=6.191! [2023-04-30 12:54:19,421][683137] Updated weights for policy 0, policy_version 385 (0.0608) [2023-04-30 12:54:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1585152. Throughput: 0: 749.6. Samples: 393012. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:23,044][682983] Avg episode reward: [(0, '6.146')] [2023-04-30 12:54:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1601536. Throughput: 0: 741.1. Samples: 397160. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:28,044][682983] Avg episode reward: [(0, '6.405')] [2023-04-30 12:54:28,989][683074] Saving new best policy, reward=6.405! [2023-04-30 12:54:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 1613824. Throughput: 0: 741.6. Samples: 399188. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:33,044][682983] Avg episode reward: [(0, '6.330')] [2023-04-30 12:54:33,079][683137] Updated weights for policy 0, policy_version 395 (0.1200) [2023-04-30 12:54:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1630208. Throughput: 0: 753.6. Samples: 404268. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:38,044][682983] Avg episode reward: [(0, '6.762')] [2023-04-30 12:54:39,881][683074] Saving new best policy, reward=6.762! [2023-04-30 12:54:43,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1646592. Throughput: 0: 763.1. Samples: 408928. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:43,045][682983] Avg episode reward: [(0, '6.827')] [2023-04-30 12:54:44,066][683074] Saving new best policy, reward=6.827! [2023-04-30 12:54:46,847][683137] Updated weights for policy 0, policy_version 405 (0.0817) [2023-04-30 12:54:47,522][683074] Signal inference workers to stop experience collection... (400 times) [2023-04-30 12:54:47,542][683137] InferenceWorker_p0-w0: stopping experience collection (400 times) [2023-04-30 12:54:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1658880. Throughput: 0: 763.1. Samples: 411000. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:48,044][682983] Avg episode reward: [(0, '7.411')] [2023-04-30 12:54:48,229][683074] Signal inference workers to resume experience collection... (400 times) [2023-04-30 12:54:48,229][683137] InferenceWorker_p0-w0: resuming experience collection (400 times) [2023-04-30 12:54:49,578][683074] Saving new best policy, reward=7.411! [2023-04-30 12:54:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1675264. Throughput: 0: 744.5. Samples: 415292. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:54:53,044][682983] Avg episode reward: [(0, '7.622')] [2023-04-30 12:54:53,699][683074] Saving new best policy, reward=7.622! [2023-04-30 12:54:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1691648. Throughput: 0: 740.4. Samples: 419704. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:54:58,044][682983] Avg episode reward: [(0, '7.770')] [2023-04-30 12:54:59,139][683074] Saving new best policy, reward=7.770! [2023-04-30 12:55:00,740][683137] Updated weights for policy 0, policy_version 415 (0.0822) [2023-04-30 12:55:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 1703936. Throughput: 0: 740.4. Samples: 421768. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:55:03,044][682983] Avg episode reward: [(0, '7.646')] [2023-04-30 12:55:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1720320. Throughput: 0: 738.8. Samples: 426256. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:55:08,044][682983] Avg episode reward: [(0, '7.578')] [2023-04-30 12:55:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1736704. Throughput: 0: 750.7. Samples: 430940. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:55:13,044][682983] Avg episode reward: [(0, '8.023')] [2023-04-30 12:55:14,336][683074] Saving new best policy, reward=8.023! [2023-04-30 12:55:14,338][683137] Updated weights for policy 0, policy_version 425 (0.0821) [2023-04-30 12:55:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1748992. Throughput: 0: 762.8. Samples: 433516. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:55:18,044][682983] Avg episode reward: [(0, '8.136')] [2023-04-30 12:55:19,826][683074] Saving new best policy, reward=8.136! [2023-04-30 12:55:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1765376. Throughput: 0: 743.1. Samples: 437708. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:55:23,044][682983] Avg episode reward: [(0, '8.116')] [2023-04-30 12:55:27,989][683137] Updated weights for policy 0, policy_version 435 (0.0813) [2023-04-30 12:55:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1781760. Throughput: 0: 739.4. Samples: 442200. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:55:28,044][682983] Avg episode reward: [(0, '8.541')] [2023-04-30 12:55:29,363][683074] Saving new best policy, reward=8.541! [2023-04-30 12:55:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1794048. Throughput: 0: 738.5. Samples: 444232. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:55:33,044][682983] Avg episode reward: [(0, '8.531')] [2023-04-30 12:55:34,902][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000440_1802240.pth... [2023-04-30 12:55:34,926][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000264_1081344.pth [2023-04-30 12:55:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1810432. Throughput: 0: 734.3. Samples: 448336. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:55:38,044][682983] Avg episode reward: [(0, '8.741')] [2023-04-30 12:55:38,965][683074] Saving new best policy, reward=8.741! [2023-04-30 12:55:41,878][683137] Updated weights for policy 0, policy_version 445 (0.0410) [2023-04-30 12:55:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 1822720. Throughput: 0: 745.9. Samples: 453268. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:55:43,044][682983] Avg episode reward: [(0, '9.066')] [2023-04-30 12:55:44,418][683074] Saving new best policy, reward=9.066! [2023-04-30 12:55:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1839104. Throughput: 0: 761.9. Samples: 456052. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:55:48,044][682983] Avg episode reward: [(0, '8.074')] [2023-04-30 12:55:53,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1855488. Throughput: 0: 753.9. Samples: 460180. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:55:53,044][682983] Avg episode reward: [(0, '8.291')] [2023-04-30 12:55:55,516][683137] Updated weights for policy 0, policy_version 455 (0.1209) [2023-04-30 12:55:56,165][683074] Signal inference workers to stop experience collection... (450 times) [2023-04-30 12:55:56,185][683137] InferenceWorker_p0-w0: stopping experience collection (450 times) [2023-04-30 12:55:56,699][683074] Signal inference workers to resume experience collection... (450 times) [2023-04-30 12:55:56,700][683137] InferenceWorker_p0-w0: resuming experience collection (450 times) [2023-04-30 12:55:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 1867776. Throughput: 0: 750.2. Samples: 464700. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:55:58,044][682983] Avg episode reward: [(0, '8.285')] [2023-04-30 12:56:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1884160. Throughput: 0: 738.3. Samples: 466740. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:56:03,044][682983] Avg episode reward: [(0, '8.085')] [2023-04-30 12:56:08,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1900544. Throughput: 0: 736.5. Samples: 470852. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:56:08,044][682983] Avg episode reward: [(0, '8.204')] [2023-04-30 12:56:09,097][683137] Updated weights for policy 0, policy_version 465 (0.0821) [2023-04-30 12:56:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 1912832. Throughput: 0: 747.8. Samples: 475852. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:56:13,044][682983] Avg episode reward: [(0, '8.138')] [2023-04-30 12:56:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1929216. Throughput: 0: 762.1. Samples: 478528. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:56:18,044][682983] Avg episode reward: [(0, '8.551')] [2023-04-30 12:56:22,620][683137] Updated weights for policy 0, policy_version 475 (0.0607) [2023-04-30 12:56:23,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1945600. Throughput: 0: 763.7. Samples: 482704. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:56:23,044][682983] Avg episode reward: [(0, '9.012')] [2023-04-30 12:56:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 3013.0). Total num frames: 1961984. Throughput: 0: 754.6. Samples: 487224. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:56:28,045][682983] Avg episode reward: [(0, '8.989')] [2023-04-30 12:56:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1974272. Throughput: 0: 738.4. Samples: 489280. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:56:33,044][682983] Avg episode reward: [(0, '9.311')] [2023-04-30 12:56:34,913][683074] Saving new best policy, reward=9.311! [2023-04-30 12:56:36,299][683137] Updated weights for policy 0, policy_version 485 (0.0218) [2023-04-30 12:56:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 1990656. Throughput: 0: 738.8. Samples: 493424. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:56:38,044][682983] Avg episode reward: [(0, '9.671')] [2023-04-30 12:56:40,396][683074] Saving new best policy, reward=9.671! [2023-04-30 12:56:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2002944. Throughput: 0: 740.4. Samples: 498020. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:56:43,044][682983] Avg episode reward: [(0, '9.790')] [2023-04-30 12:56:44,571][683074] Saving new best policy, reward=9.790! [2023-04-30 12:56:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2019328. Throughput: 0: 763.2. Samples: 501084. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:56:48,045][682983] Avg episode reward: [(0, '9.728')] [2023-04-30 12:56:50,079][683137] Updated weights for policy 0, policy_version 495 (0.0616) [2023-04-30 12:56:53,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2035712. Throughput: 0: 762.8. Samples: 505180. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:56:53,044][682983] Avg episode reward: [(0, '9.638')] [2023-04-30 12:56:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2048000. Throughput: 0: 755.7. Samples: 509860. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:56:58,044][682983] Avg episode reward: [(0, '9.757')] [2023-04-30 12:57:03,044][682983] Fps is (10 sec: 2867.1, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2064384. Throughput: 0: 741.5. Samples: 511896. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:57:03,045][682983] Avg episode reward: [(0, '10.167')] [2023-04-30 12:57:03,703][683137] Updated weights for policy 0, policy_version 505 (0.0016) [2023-04-30 12:57:04,333][683074] Signal inference workers to stop experience collection... (500 times) [2023-04-30 12:57:04,354][683137] InferenceWorker_p0-w0: stopping experience collection (500 times) [2023-04-30 12:57:05,066][683074] Signal inference workers to resume experience collection... (500 times) [2023-04-30 12:57:05,066][683074] Saving new best policy, reward=10.167! [2023-04-30 12:57:05,066][683137] InferenceWorker_p0-w0: resuming experience collection (500 times) [2023-04-30 12:57:08,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2080768. Throughput: 0: 739.4. Samples: 515976. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:57:08,044][682983] Avg episode reward: [(0, '10.532')] [2023-04-30 12:57:09,183][683074] Saving new best policy, reward=10.532! [2023-04-30 12:57:13,044][682983] Fps is (10 sec: 2867.3, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2093056. Throughput: 0: 745.6. Samples: 520776. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:57:13,044][682983] Avg episode reward: [(0, '11.026')] [2023-04-30 12:57:14,636][683074] Saving new best policy, reward=11.026! [2023-04-30 12:57:17,352][683137] Updated weights for policy 0, policy_version 515 (0.0614) [2023-04-30 12:57:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2109440. Throughput: 0: 759.0. Samples: 523436. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:57:18,045][682983] Avg episode reward: [(0, '11.371')] [2023-04-30 12:57:20,086][683074] Saving new best policy, reward=11.371! [2023-04-30 12:57:23,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2125824. Throughput: 0: 762.8. Samples: 527752. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:57:23,044][682983] Avg episode reward: [(0, '11.179')] [2023-04-30 12:57:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 2138112. Throughput: 0: 758.1. Samples: 532136. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:57:28,044][682983] Avg episode reward: [(0, '10.791')] [2023-04-30 12:57:31,020][683137] Updated weights for policy 0, policy_version 525 (0.0611) [2023-04-30 12:57:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2154496. Throughput: 0: 739.1. Samples: 534344. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:57:33,044][682983] Avg episode reward: [(0, '11.104')] [2023-04-30 12:57:35,116][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000528_2162688.pth... [2023-04-30 12:57:35,138][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000352_1441792.pth [2023-04-30 12:57:38,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2170880. Throughput: 0: 739.2. Samples: 538444. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:57:38,045][682983] Avg episode reward: [(0, '11.005')] [2023-04-30 12:57:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2183168. Throughput: 0: 740.6. Samples: 543188. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:57:43,044][682983] Avg episode reward: [(0, '11.569')] [2023-04-30 12:57:44,619][683074] Saving new best policy, reward=11.569! [2023-04-30 12:57:44,621][683137] Updated weights for policy 0, policy_version 535 (0.0408) [2023-04-30 12:57:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2199552. Throughput: 0: 754.7. Samples: 545856. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:57:48,044][682983] Avg episode reward: [(0, '12.888')] [2023-04-30 12:57:48,756][683074] Saving new best policy, reward=12.888! [2023-04-30 12:57:53,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2215936. Throughput: 0: 763.0. Samples: 550312. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:57:53,045][682983] Avg episode reward: [(0, '12.593')] [2023-04-30 12:57:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2228224. Throughput: 0: 757.0. Samples: 554840. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 12:57:58,044][682983] Avg episode reward: [(0, '12.292')] [2023-04-30 12:57:58,376][683137] Updated weights for policy 0, policy_version 545 (0.0821) [2023-04-30 12:58:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2244608. Throughput: 0: 743.2. Samples: 556880. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:58:03,044][682983] Avg episode reward: [(0, '11.857')] [2023-04-30 12:58:08,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2260992. Throughput: 0: 739.6. Samples: 561032. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:58:08,044][682983] Avg episode reward: [(0, '11.286')] [2023-04-30 12:58:11,949][683137] Updated weights for policy 0, policy_version 555 (0.0800) [2023-04-30 12:58:12,642][683074] Signal inference workers to stop experience collection... (550 times) [2023-04-30 12:58:12,664][683137] InferenceWorker_p0-w0: stopping experience collection (550 times) [2023-04-30 12:58:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 2273280. Throughput: 0: 748.3. Samples: 565808. Policy #0 lag: (min: 1.0, avg: 2.3, max: 3.0) [2023-04-30 12:58:13,044][682983] Avg episode reward: [(0, '11.360')] [2023-04-30 12:58:13,322][683074] Signal inference workers to resume experience collection... (550 times) [2023-04-30 12:58:13,322][683137] InferenceWorker_p0-w0: resuming experience collection (550 times) [2023-04-30 12:58:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2289664. Throughput: 0: 749.2. Samples: 568056. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:58:18,045][682983] Avg episode reward: [(0, '11.548')] [2023-04-30 12:58:23,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2306048. Throughput: 0: 764.5. Samples: 572848. Policy #0 lag: (min: 1.0, avg: 2.3, max: 4.0) [2023-04-30 12:58:23,045][682983] Avg episode reward: [(0, '11.677')] [2023-04-30 12:58:25,579][683137] Updated weights for policy 0, policy_version 565 (0.1000) [2023-04-30 12:58:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 2318336. Throughput: 0: 753.6. Samples: 577100. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:58:28,044][682983] Avg episode reward: [(0, '11.566')] [2023-04-30 12:58:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2334720. Throughput: 0: 747.5. Samples: 579492. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:58:33,044][682983] Avg episode reward: [(0, '13.022')] [2023-04-30 12:58:35,207][683074] Saving new best policy, reward=13.022! [2023-04-30 12:58:38,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2351104. Throughput: 0: 739.3. Samples: 583580. Policy #0 lag: (min: 1.0, avg: 2.3, max: 4.0) [2023-04-30 12:58:38,044][682983] Avg episode reward: [(0, '13.044')] [2023-04-30 12:58:39,308][683074] Saving new best policy, reward=13.044! [2023-04-30 12:58:39,310][683137] Updated weights for policy 0, policy_version 575 (0.0609) [2023-04-30 12:58:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2363392. Throughput: 0: 737.1. Samples: 588008. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:58:43,044][682983] Avg episode reward: [(0, '13.431')] [2023-04-30 12:58:44,839][683074] Saving new best policy, reward=13.431! [2023-04-30 12:58:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2379776. Throughput: 0: 750.4. Samples: 590648. Policy #0 lag: (min: 1.0, avg: 2.3, max: 4.0) [2023-04-30 12:58:48,044][682983] Avg episode reward: [(0, '13.832')] [2023-04-30 12:58:48,913][683074] Saving new best policy, reward=13.832! [2023-04-30 12:58:52,991][683137] Updated weights for policy 0, policy_version 585 (0.0615) [2023-04-30 12:58:53,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2396160. Throughput: 0: 762.6. Samples: 595348. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:58:53,044][682983] Avg episode reward: [(0, '14.697')] [2023-04-30 12:58:54,362][683074] Saving new best policy, reward=14.697! [2023-04-30 12:58:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 2408448. Throughput: 0: 748.2. Samples: 599476. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:58:58,044][682983] Avg episode reward: [(0, '14.173')] [2023-04-30 12:59:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2424832. Throughput: 0: 751.2. Samples: 601860. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:59:03,044][682983] Avg episode reward: [(0, '13.818')] [2023-04-30 12:59:06,870][683137] Updated weights for policy 0, policy_version 595 (0.0827) [2023-04-30 12:59:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 2437120. Throughput: 0: 738.8. Samples: 606096. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:59:08,045][682983] Avg episode reward: [(0, '13.007')] [2023-04-30 12:59:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2453504. Throughput: 0: 737.0. Samples: 610264. Policy #0 lag: (min: 1.0, avg: 2.3, max: 4.0) [2023-04-30 12:59:13,044][682983] Avg episode reward: [(0, '13.464')] [2023-04-30 12:59:18,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2469888. Throughput: 0: 741.8. Samples: 612872. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:59:18,044][682983] Avg episode reward: [(0, '13.153')] [2023-04-30 12:59:20,409][683137] Updated weights for policy 0, policy_version 605 (0.0814) [2023-04-30 12:59:21,031][683074] Signal inference workers to stop experience collection... (600 times) [2023-04-30 12:59:21,059][683137] InferenceWorker_p0-w0: stopping experience collection (600 times) [2023-04-30 12:59:21,783][683074] Signal inference workers to resume experience collection... (600 times) [2023-04-30 12:59:21,783][683137] InferenceWorker_p0-w0: resuming experience collection (600 times) [2023-04-30 12:59:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 2482176. Throughput: 0: 760.2. Samples: 617788. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:59:23,044][682983] Avg episode reward: [(0, '13.263')] [2023-04-30 12:59:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2498560. Throughput: 0: 754.0. Samples: 621940. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:59:28,044][682983] Avg episode reward: [(0, '13.268')] [2023-04-30 12:59:33,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2514944. Throughput: 0: 752.7. Samples: 624520. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:59:33,045][682983] Avg episode reward: [(0, '14.427')] [2023-04-30 12:59:34,004][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000615_2519040.pth... [2023-04-30 12:59:34,006][683137] Updated weights for policy 0, policy_version 615 (0.0612) [2023-04-30 12:59:34,028][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000440_1802240.pth [2023-04-30 12:59:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 2527232. Throughput: 0: 739.6. Samples: 628632. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:59:38,045][682983] Avg episode reward: [(0, '14.446')] [2023-04-30 12:59:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2543616. Throughput: 0: 741.2. Samples: 632832. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:59:43,044][682983] Avg episode reward: [(0, '13.970')] [2023-04-30 12:59:47,882][683137] Updated weights for policy 0, policy_version 625 (0.0820) [2023-04-30 12:59:48,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2560000. Throughput: 0: 739.3. Samples: 635128. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 12:59:48,044][682983] Avg episode reward: [(0, '14.162')] [2023-04-30 12:59:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 2572288. Throughput: 0: 758.7. Samples: 640236. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 12:59:53,044][682983] Avg episode reward: [(0, '14.640')] [2023-04-30 12:59:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2588672. Throughput: 0: 759.6. Samples: 644448. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 12:59:58,044][682983] Avg episode reward: [(0, '14.552')] [2023-04-30 13:00:01,358][683137] Updated weights for policy 0, policy_version 635 (0.0613) [2023-04-30 13:00:03,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2605056. Throughput: 0: 756.4. Samples: 646912. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:00:03,044][682983] Avg episode reward: [(0, '14.921')] [2023-04-30 13:00:04,140][683074] Saving new best policy, reward=14.921! [2023-04-30 13:00:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 2617344. Throughput: 0: 744.6. Samples: 651296. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 13:00:08,044][682983] Avg episode reward: [(0, '15.287')] [2023-04-30 13:00:09,541][683074] Saving new best policy, reward=15.287! [2023-04-30 13:00:13,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2633728. Throughput: 0: 743.8. Samples: 655412. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:00:13,044][682983] Avg episode reward: [(0, '14.729')] [2023-04-30 13:00:15,055][683137] Updated weights for policy 0, policy_version 645 (0.0411) [2023-04-30 13:00:18,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2650112. Throughput: 0: 740.9. Samples: 657860. Policy #0 lag: (min: 1.0, avg: 2.3, max: 4.0) [2023-04-30 13:00:18,044][682983] Avg episode reward: [(0, '14.097')] [2023-04-30 13:00:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 2662400. Throughput: 0: 754.8. Samples: 662596. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:00:23,044][682983] Avg episode reward: [(0, '14.728')] [2023-04-30 13:00:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2678784. Throughput: 0: 758.5. Samples: 666964. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:00:28,044][682983] Avg episode reward: [(0, '13.782')] [2023-04-30 13:00:28,819][683137] Updated weights for policy 0, policy_version 655 (0.1023) [2023-04-30 13:00:29,397][683074] Signal inference workers to stop experience collection... (650 times) [2023-04-30 13:00:29,418][683137] InferenceWorker_p0-w0: stopping experience collection (650 times) [2023-04-30 13:00:30,208][683074] Signal inference workers to resume experience collection... (650 times) [2023-04-30 13:00:30,208][683137] InferenceWorker_p0-w0: resuming experience collection (650 times) [2023-04-30 13:00:33,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2695168. Throughput: 0: 753.7. Samples: 669044. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:00:33,044][682983] Avg episode reward: [(0, '14.370')] [2023-04-30 13:00:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2707456. Throughput: 0: 743.7. Samples: 673704. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:00:38,044][682983] Avg episode reward: [(0, '14.548')] [2023-04-30 13:00:42,774][683137] Updated weights for policy 0, policy_version 665 (0.1226) [2023-04-30 13:00:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2723840. Throughput: 0: 742.2. Samples: 677848. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:00:43,044][682983] Avg episode reward: [(0, '14.702')] [2023-04-30 13:00:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 2736128. Throughput: 0: 732.7. Samples: 679884. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:00:48,044][682983] Avg episode reward: [(0, '15.510')] [2023-04-30 13:00:49,457][683074] Saving new best policy, reward=15.510! [2023-04-30 13:00:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2752512. Throughput: 0: 737.2. Samples: 684472. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:00:53,044][682983] Avg episode reward: [(0, '15.263')] [2023-04-30 13:00:56,263][683137] Updated weights for policy 0, policy_version 675 (0.0828) [2023-04-30 13:00:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2768896. Throughput: 0: 758.5. Samples: 689544. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:00:58,044][682983] Avg episode reward: [(0, '14.507')] [2023-04-30 13:01:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 2781184. Throughput: 0: 749.7. Samples: 691596. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:01:03,044][682983] Avg episode reward: [(0, '14.790')] [2023-04-30 13:01:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2797568. Throughput: 0: 748.9. Samples: 696296. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:01:08,044][682983] Avg episode reward: [(0, '14.394')] [2023-04-30 13:01:09,921][683137] Updated weights for policy 0, policy_version 685 (0.0806) [2023-04-30 13:01:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2813952. Throughput: 0: 742.1. Samples: 700360. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:01:13,044][682983] Avg episode reward: [(0, '14.092')] [2023-04-30 13:01:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 2826240. Throughput: 0: 742.1. Samples: 702440. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:01:18,044][682983] Avg episode reward: [(0, '14.554')] [2023-04-30 13:01:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 2842624. Throughput: 0: 735.1. Samples: 706784. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:01:23,044][682983] Avg episode reward: [(0, '14.575')] [2023-04-30 13:01:23,656][683137] Updated weights for policy 0, policy_version 695 (0.0820) [2023-04-30 13:01:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2859008. Throughput: 0: 760.0. Samples: 712048. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:01:28,044][682983] Avg episode reward: [(0, '15.110')] [2023-04-30 13:01:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2985.2). Total num frames: 2871296. Throughput: 0: 760.4. Samples: 714100. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:01:33,045][682983] Avg episode reward: [(0, '14.599')] [2023-04-30 13:01:34,482][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000703_2879488.pth... [2023-04-30 13:01:34,507][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000528_2162688.pth [2023-04-30 13:01:37,211][683137] Updated weights for policy 0, policy_version 705 (0.1002) [2023-04-30 13:01:37,869][683074] Signal inference workers to stop experience collection... (700 times) [2023-04-30 13:01:37,890][683137] InferenceWorker_p0-w0: stopping experience collection (700 times) [2023-04-30 13:01:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2887680. Throughput: 0: 762.8. Samples: 718800. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:01:38,044][682983] Avg episode reward: [(0, '15.883')] [2023-04-30 13:01:38,612][683074] Signal inference workers to resume experience collection... (700 times) [2023-04-30 13:01:38,613][683137] InferenceWorker_p0-w0: resuming experience collection (700 times) [2023-04-30 13:01:39,946][683074] Saving new best policy, reward=15.883! [2023-04-30 13:01:43,044][682983] Fps is (10 sec: 3276.9, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2904064. Throughput: 0: 740.4. Samples: 722860. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:01:43,044][682983] Avg episode reward: [(0, '16.496')] [2023-04-30 13:01:44,027][683074] Saving new best policy, reward=16.496! [2023-04-30 13:01:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 2916352. Throughput: 0: 739.5. Samples: 724872. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:01:48,044][682983] Avg episode reward: [(0, '16.137')] [2023-04-30 13:01:50,854][683137] Updated weights for policy 0, policy_version 715 (0.0612) [2023-04-30 13:01:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2932736. Throughput: 0: 745.3. Samples: 729836. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:01:53,044][682983] Avg episode reward: [(0, '15.545')] [2023-04-30 13:01:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2949120. Throughput: 0: 759.7. Samples: 734548. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:01:58,044][682983] Avg episode reward: [(0, '15.810')] [2023-04-30 13:02:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 2961408. Throughput: 0: 759.4. Samples: 736612. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:02:03,044][682983] Avg episode reward: [(0, '14.536')] [2023-04-30 13:02:04,465][683137] Updated weights for policy 0, policy_version 725 (0.0413) [2023-04-30 13:02:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2977792. Throughput: 0: 764.7. Samples: 741196. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:02:08,044][682983] Avg episode reward: [(0, '13.761')] [2023-04-30 13:02:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 2994176. Throughput: 0: 740.9. Samples: 745388. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:02:13,044][682983] Avg episode reward: [(0, '14.195')] [2023-04-30 13:02:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 3006464. Throughput: 0: 740.5. Samples: 747424. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:02:18,044][682983] Avg episode reward: [(0, '14.984')] [2023-04-30 13:02:18,312][683137] Updated weights for policy 0, policy_version 735 (0.0815) [2023-04-30 13:02:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3022848. Throughput: 0: 737.2. Samples: 751976. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:02:23,044][682983] Avg episode reward: [(0, '15.762')] [2023-04-30 13:02:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3039232. Throughput: 0: 761.7. Samples: 757136. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:02:28,044][682983] Avg episode reward: [(0, '16.268')] [2023-04-30 13:02:31,945][683137] Updated weights for policy 0, policy_version 745 (0.1199) [2023-04-30 13:02:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 3051520. Throughput: 0: 762.2. Samples: 759172. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:02:33,044][682983] Avg episode reward: [(0, '16.758')] [2023-04-30 13:02:34,443][683074] Saving new best policy, reward=16.758! [2023-04-30 13:02:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3067904. Throughput: 0: 756.0. Samples: 763856. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:02:38,044][682983] Avg episode reward: [(0, '18.018')] [2023-04-30 13:02:39,978][683074] Saving new best policy, reward=18.018! [2023-04-30 13:02:43,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3084288. Throughput: 0: 742.8. Samples: 767976. Policy #0 lag: (min: 1.0, avg: 2.3, max: 3.0) [2023-04-30 13:02:43,044][682983] Avg episode reward: [(0, '17.980')] [2023-04-30 13:02:45,496][683137] Updated weights for policy 0, policy_version 755 (0.0422) [2023-04-30 13:02:46,083][683074] Signal inference workers to stop experience collection... (750 times) [2023-04-30 13:02:46,104][683137] InferenceWorker_p0-w0: stopping experience collection (750 times) [2023-04-30 13:02:46,844][683074] Signal inference workers to resume experience collection... (750 times) [2023-04-30 13:02:46,845][683137] InferenceWorker_p0-w0: resuming experience collection (750 times) [2023-04-30 13:02:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 3096576. Throughput: 0: 743.1. Samples: 770052. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:02:48,044][682983] Avg episode reward: [(0, '16.947')] [2023-04-30 13:02:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3112960. Throughput: 0: 736.5. Samples: 774340. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:02:53,045][682983] Avg episode reward: [(0, '16.887')] [2023-04-30 13:02:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3129344. Throughput: 0: 760.3. Samples: 779600. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:02:58,044][682983] Avg episode reward: [(0, '16.813')] [2023-04-30 13:02:59,125][683137] Updated weights for policy 0, policy_version 765 (0.1199) [2023-04-30 13:03:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 3141632. Throughput: 0: 760.3. Samples: 781636. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:03:03,044][682983] Avg episode reward: [(0, '15.977')] [2023-04-30 13:03:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3158016. Throughput: 0: 765.2. Samples: 786412. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:03:08,044][682983] Avg episode reward: [(0, '16.698')] [2023-04-30 13:03:12,932][683137] Updated weights for policy 0, policy_version 775 (0.0816) [2023-04-30 13:03:13,044][682983] Fps is (10 sec: 3276.7, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3174400. Throughput: 0: 741.2. Samples: 790492. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:03:13,045][682983] Avg episode reward: [(0, '17.640')] [2023-04-30 13:03:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 3186688. Throughput: 0: 741.9. Samples: 792556. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:03:18,044][682983] Avg episode reward: [(0, '16.939')] [2023-04-30 13:03:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3203072. Throughput: 0: 733.8. Samples: 796876. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:03:23,045][682983] Avg episode reward: [(0, '17.946')] [2023-04-30 13:03:26,430][683137] Updated weights for policy 0, policy_version 785 (0.1016) [2023-04-30 13:03:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3219456. Throughput: 0: 759.5. Samples: 802152. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:03:28,045][682983] Avg episode reward: [(0, '18.516')] [2023-04-30 13:03:29,161][683074] Saving new best policy, reward=18.516! [2023-04-30 13:03:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 3231744. Throughput: 0: 759.0. Samples: 804208. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:03:33,044][682983] Avg episode reward: [(0, '18.890')] [2023-04-30 13:03:34,662][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000791_3239936.pth... [2023-04-30 13:03:34,686][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000615_2519040.pth [2023-04-30 13:03:34,689][683074] Saving new best policy, reward=18.890! [2023-04-30 13:03:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3248128. Throughput: 0: 764.7. Samples: 808752. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:03:38,044][682983] Avg episode reward: [(0, '18.836')] [2023-04-30 13:03:40,104][683137] Updated weights for policy 0, policy_version 795 (0.0212) [2023-04-30 13:03:43,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3264512. Throughput: 0: 743.5. Samples: 813056. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:03:43,045][682983] Avg episode reward: [(0, '19.253')] [2023-04-30 13:03:44,192][683074] Saving new best policy, reward=19.253! [2023-04-30 13:03:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2985.2). Total num frames: 3276800. Throughput: 0: 743.9. Samples: 815112. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:03:48,044][682983] Avg episode reward: [(0, '20.032')] [2023-04-30 13:03:49,634][683074] Saving new best policy, reward=20.032! [2023-04-30 13:03:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3293184. Throughput: 0: 731.0. Samples: 819308. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:03:53,044][682983] Avg episode reward: [(0, '20.225')] [2023-04-30 13:03:53,716][683137] Updated weights for policy 0, policy_version 805 (0.0798) [2023-04-30 13:03:54,275][683074] Signal inference workers to stop experience collection... (800 times) [2023-04-30 13:03:54,296][683137] InferenceWorker_p0-w0: stopping experience collection (800 times) [2023-04-30 13:03:55,067][683074] Signal inference workers to resume experience collection... (800 times) [2023-04-30 13:03:55,068][683074] Saving new best policy, reward=20.225! [2023-04-30 13:03:55,068][683137] InferenceWorker_p0-w0: resuming experience collection (800 times) [2023-04-30 13:03:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3309568. Throughput: 0: 759.3. Samples: 824660. Policy #0 lag: (min: 1.0, avg: 2.3, max: 3.0) [2023-04-30 13:03:58,044][682983] Avg episode reward: [(0, '20.326')] [2023-04-30 13:03:59,155][683074] Saving new best policy, reward=20.326! [2023-04-30 13:04:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3321856. Throughput: 0: 759.3. Samples: 826724. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:04:03,044][682983] Avg episode reward: [(0, '20.112')] [2023-04-30 13:04:07,458][683137] Updated weights for policy 0, policy_version 815 (0.1039) [2023-04-30 13:04:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3338240. Throughput: 0: 756.4. Samples: 830916. Policy #0 lag: (min: 1.0, avg: 2.3, max: 4.0) [2023-04-30 13:04:08,044][682983] Avg episode reward: [(0, '19.533')] [2023-04-30 13:04:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3354624. Throughput: 0: 743.8. Samples: 835624. Policy #0 lag: (min: 1.0, avg: 2.3, max: 4.0) [2023-04-30 13:04:13,044][682983] Avg episode reward: [(0, '20.020')] [2023-04-30 13:04:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3366912. Throughput: 0: 743.4. Samples: 837660. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:04:18,044][682983] Avg episode reward: [(0, '18.374')] [2023-04-30 13:04:21,109][683137] Updated weights for policy 0, policy_version 825 (0.0998) [2023-04-30 13:04:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3383296. Throughput: 0: 739.2. Samples: 842016. Policy #0 lag: (min: 1.0, avg: 2.3, max: 3.0) [2023-04-30 13:04:23,044][682983] Avg episode reward: [(0, '18.362')] [2023-04-30 13:04:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3399680. Throughput: 0: 751.0. Samples: 846852. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 13:04:28,044][682983] Avg episode reward: [(0, '18.226')] [2023-04-30 13:04:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3411968. Throughput: 0: 759.4. Samples: 849284. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:04:33,044][682983] Avg episode reward: [(0, '19.551')] [2023-04-30 13:04:34,720][683137] Updated weights for policy 0, policy_version 835 (0.1216) [2023-04-30 13:04:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3428352. Throughput: 0: 757.3. Samples: 853388. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:04:38,044][682983] Avg episode reward: [(0, '20.090')] [2023-04-30 13:04:43,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3444736. Throughput: 0: 742.8. Samples: 858084. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:04:43,045][682983] Avg episode reward: [(0, '19.302')] [2023-04-30 13:04:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3457024. Throughput: 0: 742.1. Samples: 860120. Policy #0 lag: (min: 1.0, avg: 2.2, max: 3.0) [2023-04-30 13:04:48,044][682983] Avg episode reward: [(0, '20.120')] [2023-04-30 13:04:48,281][683137] Updated weights for policy 0, policy_version 845 (0.0995) [2023-04-30 13:04:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3473408. Throughput: 0: 749.9. Samples: 864660. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 13:04:53,044][682983] Avg episode reward: [(0, '20.576')] [2023-04-30 13:04:55,093][683074] Saving new best policy, reward=20.576! [2023-04-30 13:04:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3489792. Throughput: 0: 758.1. Samples: 869740. Policy #0 lag: (min: 1.0, avg: 2.2, max: 4.0) [2023-04-30 13:04:58,044][682983] Avg episode reward: [(0, '20.160')] [2023-04-30 13:05:02,072][683137] Updated weights for policy 0, policy_version 855 (0.1027) [2023-04-30 13:05:02,733][683074] Signal inference workers to stop experience collection... (850 times) [2023-04-30 13:05:02,753][683137] InferenceWorker_p0-w0: stopping experience collection (850 times) [2023-04-30 13:05:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3502080. Throughput: 0: 758.0. Samples: 871772. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:05:03,044][682983] Avg episode reward: [(0, '19.109')] [2023-04-30 13:05:03,253][683074] Signal inference workers to resume experience collection... (850 times) [2023-04-30 13:05:03,254][683137] InferenceWorker_p0-w0: resuming experience collection (850 times) [2023-04-30 13:05:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3518464. Throughput: 0: 755.6. Samples: 876020. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 13:05:08,044][682983] Avg episode reward: [(0, '19.191')] [2023-04-30 13:05:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3534848. Throughput: 0: 745.9. Samples: 880416. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:05:13,045][682983] Avg episode reward: [(0, '19.888')] [2023-04-30 13:05:15,467][683137] Updated weights for policy 0, policy_version 865 (0.0811) [2023-04-30 13:05:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3547136. Throughput: 0: 737.7. Samples: 882480. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 13:05:18,044][682983] Avg episode reward: [(0, '20.366')] [2023-04-30 13:05:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3563520. Throughput: 0: 751.9. Samples: 887224. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 13:05:23,045][682983] Avg episode reward: [(0, '18.907')] [2023-04-30 13:05:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3579904. Throughput: 0: 757.3. Samples: 892164. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:05:28,044][682983] Avg episode reward: [(0, '18.653')] [2023-04-30 13:05:29,298][683137] Updated weights for policy 0, policy_version 875 (0.0815) [2023-04-30 13:05:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3592192. Throughput: 0: 757.8. Samples: 894220. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:05:33,044][682983] Avg episode reward: [(0, '19.605')] [2023-04-30 13:05:34,608][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000879_3600384.pth... [2023-04-30 13:05:34,633][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000703_2879488.pth [2023-04-30 13:05:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3608576. Throughput: 0: 758.6. Samples: 898796. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:05:38,044][682983] Avg episode reward: [(0, '18.191')] [2023-04-30 13:05:42,970][683137] Updated weights for policy 0, policy_version 885 (0.0601) [2023-04-30 13:05:43,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 3013.0). Total num frames: 3624960. Throughput: 0: 739.1. Samples: 903000. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:05:43,044][682983] Avg episode reward: [(0, '17.661')] [2023-04-30 13:05:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3637248. Throughput: 0: 738.8. Samples: 905016. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:05:48,044][682983] Avg episode reward: [(0, '17.378')] [2023-04-30 13:05:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3653632. Throughput: 0: 750.1. Samples: 909776. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:05:53,044][682983] Avg episode reward: [(0, '17.987')] [2023-04-30 13:05:56,402][683137] Updated weights for policy 0, policy_version 895 (0.0829) [2023-04-30 13:05:58,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 3013.0). Total num frames: 3670016. Throughput: 0: 762.1. Samples: 914712. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:05:58,044][682983] Avg episode reward: [(0, '18.096')] [2023-04-30 13:06:03,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3682304. Throughput: 0: 762.1. Samples: 916776. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:06:03,045][682983] Avg episode reward: [(0, '17.302')] [2023-04-30 13:06:08,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3698688. Throughput: 0: 750.6. Samples: 921000. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:06:08,044][682983] Avg episode reward: [(0, '18.105')] [2023-04-30 13:06:10,027][683137] Updated weights for policy 0, policy_version 905 (0.0615) [2023-04-30 13:06:10,627][683074] Signal inference workers to stop experience collection... (900 times) [2023-04-30 13:06:10,649][683137] InferenceWorker_p0-w0: stopping experience collection (900 times) [2023-04-30 13:06:11,391][683074] Signal inference workers to resume experience collection... (900 times) [2023-04-30 13:06:11,392][683137] InferenceWorker_p0-w0: resuming experience collection (900 times) [2023-04-30 13:06:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 3013.0). Total num frames: 3715072. Throughput: 0: 742.3. Samples: 925568. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:06:13,045][682983] Avg episode reward: [(0, '18.338')] [2023-04-30 13:06:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3727360. Throughput: 0: 742.7. Samples: 927640. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:06:18,044][682983] Avg episode reward: [(0, '18.425')] [2023-04-30 13:06:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3743744. Throughput: 0: 741.1. Samples: 932144. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:06:23,044][682983] Avg episode reward: [(0, '18.785')] [2023-04-30 13:06:23,750][683137] Updated weights for policy 0, policy_version 915 (0.1016) [2023-04-30 13:06:28,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 3013.0). Total num frames: 3760128. Throughput: 0: 755.0. Samples: 936976. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:06:28,044][682983] Avg episode reward: [(0, '18.571')] [2023-04-30 13:06:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3772416. Throughput: 0: 762.0. Samples: 939304. Policy #0 lag: (min: 1.0, avg: 2.0, max: 3.0) [2023-04-30 13:06:33,045][682983] Avg episode reward: [(0, '19.278')] [2023-04-30 13:06:37,462][683137] Updated weights for policy 0, policy_version 925 (0.0820) [2023-04-30 13:06:38,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3788800. Throughput: 0: 748.8. Samples: 943472. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:06:38,044][682983] Avg episode reward: [(0, '19.292')] [2023-04-30 13:06:43,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 3013.0). Total num frames: 3805184. Throughput: 0: 742.5. Samples: 948124. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:06:43,044][682983] Avg episode reward: [(0, '19.691')] [2023-04-30 13:06:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3817472. Throughput: 0: 742.7. Samples: 950196. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:06:48,044][682983] Avg episode reward: [(0, '19.590')] [2023-04-30 13:06:51,378][683137] Updated weights for policy 0, policy_version 935 (0.0809) [2023-04-30 13:06:53,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3833856. Throughput: 0: 741.9. Samples: 954384. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:06:53,045][682983] Avg episode reward: [(0, '20.647')] [2023-04-30 13:06:55,307][683074] Saving new best policy, reward=20.647! [2023-04-30 13:06:58,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 3846144. Throughput: 0: 756.2. Samples: 959596. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:06:58,044][682983] Avg episode reward: [(0, '20.474')] [2023-04-30 13:07:03,044][682983] Fps is (10 sec: 2867.3, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3862528. Throughput: 0: 758.2. Samples: 961760. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:03,044][682983] Avg episode reward: [(0, '20.640')] [2023-04-30 13:07:04,875][683137] Updated weights for policy 0, policy_version 945 (0.1224) [2023-04-30 13:07:08,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3878912. Throughput: 0: 749.9. Samples: 965888. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:08,044][682983] Avg episode reward: [(0, '20.677')] [2023-04-30 13:07:08,923][683074] Saving new best policy, reward=20.677! [2023-04-30 13:07:13,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 3013.0). Total num frames: 3895296. Throughput: 0: 749.4. Samples: 970700. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:13,044][682983] Avg episode reward: [(0, '20.801')] [2023-04-30 13:07:14,378][683074] Saving new best policy, reward=20.801! [2023-04-30 13:07:18,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3907584. Throughput: 0: 743.6. Samples: 972764. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:18,044][682983] Avg episode reward: [(0, '20.694')] [2023-04-30 13:07:18,475][683137] Updated weights for policy 0, policy_version 955 (0.0998) [2023-04-30 13:07:19,050][683074] Signal inference workers to stop experience collection... (950 times) [2023-04-30 13:07:19,071][683137] InferenceWorker_p0-w0: stopping experience collection (950 times) [2023-04-30 13:07:19,863][683074] Signal inference workers to resume experience collection... (950 times) [2023-04-30 13:07:19,863][683137] InferenceWorker_p0-w0: resuming experience collection (950 times) [2023-04-30 13:07:23,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3923968. Throughput: 0: 744.0. Samples: 976952. Policy #0 lag: (min: 1.0, avg: 2.1, max: 4.0) [2023-04-30 13:07:23,044][682983] Avg episode reward: [(0, '20.036')] [2023-04-30 13:07:28,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 3936256. Throughput: 0: 748.4. Samples: 981800. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:28,044][682983] Avg episode reward: [(0, '19.883')] [2023-04-30 13:07:32,132][683137] Updated weights for policy 0, policy_version 965 (0.0822) [2023-04-30 13:07:33,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3952640. Throughput: 0: 758.1. Samples: 984312. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:33,044][682983] Avg episode reward: [(0, '18.899')] [2023-04-30 13:07:34,898][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000967_3960832.pth... [2023-04-30 13:07:34,925][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000791_3239936.pth [2023-04-30 13:07:38,044][682983] Fps is (10 sec: 3276.8, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3969024. Throughput: 0: 755.7. Samples: 988392. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:38,044][682983] Avg episode reward: [(0, '18.993')] [2023-04-30 13:07:43,044][682983] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2999.1). Total num frames: 3981312. Throughput: 0: 736.7. Samples: 992748. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:43,044][682983] Avg episode reward: [(0, '18.584')] [2023-04-30 13:07:46,267][683137] Updated weights for policy 0, policy_version 975 (0.0823) [2023-04-30 13:07:48,044][682983] Fps is (10 sec: 2867.2, 60 sec: 3003.7, 300 sec: 2999.1). Total num frames: 3997696. Throughput: 0: 745.8. Samples: 995320. Policy #0 lag: (min: 1.0, avg: 2.1, max: 3.0) [2023-04-30 13:07:48,044][682983] Avg episode reward: [(0, '19.073')] [2023-04-30 13:07:50,206][683074] Stopping Batcher_0... [2023-04-30 13:07:50,207][683074] Loop batcher_evt_loop terminating... [2023-04-30 13:07:50,214][682983] Component Batcher_0 stopped! [2023-04-30 13:07:50,223][683139] Stopping RolloutWorker_w1... [2023-04-30 13:07:50,223][682983] Component RolloutWorker_w1 stopped! [2023-04-30 13:07:50,223][683139] Loop rollout_proc1_evt_loop terminating... [2023-04-30 13:07:50,223][683149] Stopping RolloutWorker_w7... [2023-04-30 13:07:50,223][683141] Stopping RolloutWorker_w3... [2023-04-30 13:07:50,223][683145] Stopping RolloutWorker_w6... [2023-04-30 13:07:50,223][683140] Stopping RolloutWorker_w2... [2023-04-30 13:07:50,223][683149] Loop rollout_proc7_evt_loop terminating... [2023-04-30 13:07:50,223][682983] Component RolloutWorker_w7 stopped! [2023-04-30 13:07:50,224][682983] Component RolloutWorker_w3 stopped! [2023-04-30 13:07:50,224][683145] Loop rollout_proc6_evt_loop terminating... [2023-04-30 13:07:50,224][683141] Loop rollout_proc3_evt_loop terminating... [2023-04-30 13:07:50,224][683140] Loop rollout_proc2_evt_loop terminating... [2023-04-30 13:07:50,224][682983] Component RolloutWorker_w6 stopped! [2023-04-30 13:07:50,224][683144] Stopping RolloutWorker_w5... [2023-04-30 13:07:50,224][683142] Stopping RolloutWorker_w4... [2023-04-30 13:07:50,224][682983] Component RolloutWorker_w2 stopped! [2023-04-30 13:07:50,224][682983] Component RolloutWorker_w5 stopped! [2023-04-30 13:07:50,224][683142] Loop rollout_proc4_evt_loop terminating... [2023-04-30 13:07:50,224][683144] Loop rollout_proc5_evt_loop terminating... [2023-04-30 13:07:50,225][682983] Component RolloutWorker_w4 stopped! [2023-04-30 13:07:50,240][683138] Stopping RolloutWorker_w0... [2023-04-30 13:07:50,240][682983] Component RolloutWorker_w0 stopped! [2023-04-30 13:07:50,241][683138] Loop rollout_proc0_evt_loop terminating... [2023-04-30 13:07:50,280][683137] Weights refcount: 2 0 [2023-04-30 13:07:50,281][683137] Stopping InferenceWorker_p0-w0... [2023-04-30 13:07:50,282][683137] Loop inference_proc0-0_evt_loop terminating... [2023-04-30 13:07:50,282][682983] Component InferenceWorker_p0-w0 stopped! [2023-04-30 13:07:51,610][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000979_4009984.pth... [2023-04-30 13:07:51,633][683074] Removing ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000879_3600384.pth [2023-04-30 13:07:51,636][683074] Saving ./train_dir/doom_health_gathering_supreme/checkpoint_p0/checkpoint_000000979_4009984.pth... [2023-04-30 13:07:51,667][683074] Stopping LearnerWorker_p0... [2023-04-30 13:07:51,667][682983] Component LearnerWorker_p0 stopped! [2023-04-30 13:07:51,667][683074] Loop learner_proc0_evt_loop terminating... [2023-04-30 13:07:51,667][682983] Waiting for process learner_proc0 to stop... [2023-04-30 13:07:51,842][682983] Waiting for process inference_proc0-0 to join... [2023-04-30 13:07:51,843][682983] Waiting for process rollout_proc0 to join... [2023-04-30 13:07:51,843][682983] Waiting for process rollout_proc1 to join... [2023-04-30 13:07:51,843][682983] Waiting for process rollout_proc2 to join... [2023-04-30 13:07:51,843][682983] Waiting for process rollout_proc3 to join... [2023-04-30 13:07:51,843][682983] Waiting for process rollout_proc4 to join... [2023-04-30 13:07:51,843][682983] Waiting for process rollout_proc5 to join... [2023-04-30 13:07:51,844][682983] Waiting for process rollout_proc6 to join... [2023-04-30 13:07:51,844][682983] Waiting for process rollout_proc7 to join... [2023-04-30 13:07:51,844][682983] Batcher 0 profile tree view: batching: 4.6847, releasing_batches: 0.1589 [2023-04-30 13:07:51,844][682983] InferenceWorker_p0-w0 profile tree view: wait_policy: 0.0051 wait_policy_total: 6.7719 update_model: 74.6759 weight_update: 0.1017 one_step: 0.0334 handle_policy_step: 455.4509 deserialize: 5.5774, stack: 0.4649, obs_to_device_normalize: 29.5796, forward: 403.7178, send_messages: 8.4459 prepare_outputs: 4.5571 to_cpu: 0.3871 [2023-04-30 13:07:51,844][682983] Learner 0 profile tree view: misc: 0.0030, prepare_batch: 230.8644 train: 1097.8844 epoch_init: 0.0034, minibatch_init: 0.0043, losses_postprocess: 0.0338, kl_divergence: 0.1467, after_optimizer: 0.7092 calculate_losses: 382.0104 losses_init: 0.0019, forward_head: 277.3595, bptt_initial: 0.9937, tail: 0.7954, advantages_returns: 0.0669, losses: 0.3979 bptt: 102.2738 bptt_forward_core: 102.0908 update: 714.7093 clip: 1.3180 [2023-04-30 13:07:51,844][682983] RolloutWorker_w0 profile tree view: wait_for_trajectories: 0.0646, enqueue_policy_requests: 3.8134, env_step: 90.4966, overhead: 7.0037, complete_rollouts: 0.1099 save_policy_outputs: 4.7685 split_output_tensors: 2.2309 [2023-04-30 13:07:51,844][682983] RolloutWorker_w7 profile tree view: wait_for_trajectories: 0.0636, enqueue_policy_requests: 3.7639, env_step: 90.4639, overhead: 7.0318, complete_rollouts: 0.1070 save_policy_outputs: 4.7276 split_output_tensors: 2.2120 [2023-04-30 13:07:51,845][682983] Loop Runner_EvtLoop terminating... [2023-04-30 13:07:51,845][682983] Runner profile tree view: main_loop: 1337.7066 [2023-04-30 13:07:51,845][682983] Collected {0: 4009984}, FPS: 2982.3 |