|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
--- |
|
tags: |
|
- stable-diffusion |
|
- text-to-image |
|
inference: false |
|
--- |
|
|
|
# Stable Diffusion v2 Model Card |
|
This model card focuses on the model associated with the Stable Diffusion v2 model, available [here](https://github.com/Stability-AI/stablediffusion). |
|
|
|
This `stable-diffusion-2` model is resumed from [stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) (`512-base-ema.ckpt`) and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on `768x768` images. |
|
|
|
![image](https://github.com/Stability-AI/stablediffusion/blob/main/assets/stable-samples/txt2img/768/merged-0005.png?raw=true) |
|
|
|
- Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `768-v-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/768-v-ema.ckpt). |
|
- Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-2#examples) |
|
|
|
## Model Details |
|
- **Developed by:** Robin Rombach, Patrick Esser |
|
- **Model type:** Diffusion-based text-to-image generation model |
|
- **Language(s):** English |
|
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) |
|
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)). |
|
- **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/). |
|
- **Cite as:** |
|
|
|
@InProceedings{Rombach_2022_CVPR, |
|
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, |
|
title = {High-Resolution Image Synthesis With Latent Diffusion Models}, |
|
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
month = {June}, |
|
year = {2022}, |
|
pages = {10684-10695} |
|
} |
|
|
|
|
|
## Examples |
|
|
|
Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 in a simple and efficient manner. |
|
|
|
```bash |
|
pip install --upgrade git+https://github.com/huggingface/diffusers.git transformers accelerate scipy |
|
``` |
|
Running the pipeline (if you don't swap the scheduler it will run with the default DDIM, in this example we are swapping it to EulerDiscreteScheduler): |
|
*.7z filter=lfs diff=lfs merge=lfs -text |
|
*.arrow filter=lfs diff=lfs merge=lfs -text |
|
*.bin filter=lfs diff=lfs merge=lfs -text |
|
*.bz2 filter=lfs diff=lfs merge=lfs -text |
|
*.ftz filter=lfs diff=lfs merge=lfs -text |
|
*.gz filter=lfs diff=lfs merge=lfs -text |
|
*.h5 filter=lfs diff=lfs merge=lfs -text |
|
*.joblib filter=lfs diff=lfs merge=lfs -text |
|
*.lfs.* filter=lfs diff=lfs merge=lfs -text |
|
*.mlmodel filter=lfs diff=lfs merge=lfs -text |
|
*.model filter=lfs diff=lfs merge=lfs -text |
|
*.msgpack filter=lfs diff=lfs merge=lfs -text |
|
*.npy filter=lfs diff=lfs merge=lfs -text |
|
*.npz filter=lfs diff=lfs merge=lfs -text |
|
*.onnx filter=lfs diff=lfs merge=lfs -text |
|
*.ot filter=lfs diff=lfs merge=lfs -text |
|
*.parquet filter=lfs diff=lfs merge=lfs -text |
|
*.pb filter=lfs diff=lfs merge=lfs -text |
|
*.pickle filter=lfs diff=lfs merge=lfs -text |
|
*.pkl filter=lfs diff=lfs merge=lfs -text |
|
*.pt filter=lfs diff=lfs merge=lfs -text |
|
*.pth filter=lfs diff=lfs merge=lfs -text |
|
*.rar filter=lfs diff=lfs merge=lfs -text |
|
*.safetensors filter=lfs diff=lfs merge=lfs -text |
|
saved_model/**/* filter=lfs diff=lfs merge=lfs -text |
|
*.tar.* filter=lfs diff=lfs merge=lfs -text |
|
*.tflite filter=lfs diff=lfs merge=lfs -text |
|
*.tgz filter=lfs diff=lfs merge=lfs -text |
|
*.wasm filter=lfs diff=lfs merge=lfs -text |
|
*.xz filter=lfs diff=lfs merge=lfs -text |
|
*.zip filter=lfs diff=lfs merge=lfs -text |
|
*.zst filter=lfs diff=lfs merge=lfs -text |
|
*tfevents* filter=lfs diff=lfs merge=lfs -text |