|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- common_voice |
|
language: |
|
- ja |
|
tags: |
|
- audio |
|
--- |
|
|
|
# Fine-tuned Japanese Whisper model for speech recognition using whisper-base |
|
Fine-tuned [openai/whisper-base](https://huggingface.co/openai/whisper-base) on Japanese using [Common Voice](https://commonvoice.mozilla.org/ja/datasets), [JVS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus) and [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
The model can be used directly as follows. |
|
```python |
|
from transformers import WhisperForConditionalGeneration, WhisperProcessor |
|
from datasets import load_dataset |
|
import librosa |
|
import torch |
|
|
|
LANG_ID = "ja" |
|
MODEL_ID = "Ivydata/whisper-base-japanese" |
|
SAMPLES = 10 |
|
|
|
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") |
|
processor = WhisperProcessor.from_pretrained("openai/whisper-base") |
|
model = WhisperForConditionalGeneration.from_pretrained(MODEL_ID) |
|
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids( |
|
language="ja", task="transcribe" |
|
) |
|
model.config.suppress_tokens = [] |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) |
|
batch["speech"] = speech_array |
|
batch["sentence"] = batch["sentence"].upper() |
|
batch["sampling_rate"] = sampling_rate |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
sample = test_dataset[0] |
|
input_features = processor(sample["speech"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features |
|
predicted_ids = model.generate(input_features) |
|
|
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) |
|
# ['<|startoftranscript|><|ja|><|transcribe|><|notimestamps|>ζ¨ζγγγ«ι»θ©±γθ²Έγγ¦γγγγΎγγγ<|endoftext|>'] |
|
|
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) |
|
# ['ζ¨ζγγγ«ι»θ©±γθ²Έγγ¦γγγγΎγγγ'] |
|
|
|
``` |
|
|
|
|
|
## Test Result |
|
|
|
In the table below I report the Character Error Rate (CER) of the model tested on [TEDxJP-10K](https://github.com/laboroai/TEDxJP-10K) dataset. |
|
| Model | CER | |
|
| ------------- | ------------- | |
|
| Ivydata/whisper-small-japanese | **27.25%** | |
|
| Ivydata/wav2vec2-large-xlsr-53-japanese | **27.87%** | |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-japanese | 34.18% | |