distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.9432
- Accuracy: 0.84
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1412 | 1.0 | 113 | 2.0696 | 0.55 |
1.433 | 2.0 | 226 | 1.4669 | 0.6 |
1.1466 | 3.0 | 339 | 1.0781 | 0.7 |
0.689 | 4.0 | 452 | 0.8115 | 0.78 |
0.5486 | 5.0 | 565 | 0.7290 | 0.79 |
0.3461 | 6.0 | 678 | 0.6226 | 0.81 |
0.3023 | 7.0 | 791 | 0.5584 | 0.8 |
0.1167 | 8.0 | 904 | 0.6853 | 0.81 |
0.0821 | 9.0 | 1017 | 0.6419 | 0.83 |
0.0398 | 10.0 | 1130 | 0.7172 | 0.83 |
0.0149 | 11.0 | 1243 | 0.7830 | 0.82 |
0.0081 | 12.0 | 1356 | 0.8100 | 0.83 |
0.0062 | 13.0 | 1469 | 0.8566 | 0.85 |
0.0049 | 14.0 | 1582 | 0.9472 | 0.83 |
0.0039 | 15.0 | 1695 | 0.9194 | 0.83 |
0.0036 | 16.0 | 1808 | 0.9292 | 0.84 |
0.0034 | 17.0 | 1921 | 0.9399 | 0.83 |
0.003 | 18.0 | 2034 | 0.9606 | 0.83 |
0.0028 | 19.0 | 2147 | 0.9453 | 0.84 |
0.0028 | 20.0 | 2260 | 0.9432 | 0.84 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 23
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for JCam1998/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert