layoutlmv3-real_triplet

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0279
  • Item: {'precision': 0.9425511197663097, 'recall': 0.7378048780487805, 'f1': 0.827704147071398, 'number': 2624}
  • Aption: {'precision': 0.8349913494809689, 'recall': 0.7924876847290641, 'f1': 0.81318449873631, 'number': 4872}
  • Ootnote: {'precision': 0.7846153846153846, 'recall': 0.8360655737704918, 'f1': 0.8095238095238095, 'number': 122}
  • Ormula: {'precision': 0.9865976241242765, 'recall': 0.9920367534456356, 'f1': 0.9893097128894318, 'number': 3265}
  • Overall Precision: 0.9056
  • Overall Recall: 0.8397
  • Overall F1: 0.8714
  • Overall Accuracy: 0.9961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Item Aption Ootnote Ormula Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0166 1.0 8507 0.0252 {'precision': 0.9114948731786292, 'recall': 0.6436737804878049, 'f1': 0.7545231181594819, 'number': 2624} {'precision': 0.778075463273052, 'recall': 0.715311986863711, 'f1': 0.7453748262217944, 'number': 4872} {'precision': 0.8598130841121495, 'recall': 0.7540983606557377, 'f1': 0.8034934497816593, 'number': 122} {'precision': 0.976365868631062, 'recall': 0.9742725880551302, 'f1': 0.9753181051663345, 'number': 3265} 0.8711 0.7762 0.8209 0.9948
0.0075 2.0 17014 0.0318 {'precision': 0.9079837618403248, 'recall': 0.5114329268292683, 'f1': 0.6543149683081424, 'number': 2624} {'precision': 0.7194696441032798, 'recall': 0.6348522167487685, 'f1': 0.6745175008177952, 'number': 4872} {'precision': 0.9207920792079208, 'recall': 0.7622950819672131, 'f1': 0.8340807174887892, 'number': 122} {'precision': 0.9831132944427388, 'recall': 0.9807044410413476, 'f1': 0.9819073903710519, 'number': 3265} 0.8462 0.7103 0.7723 0.9938
0.0057 3.0 25521 0.0338 {'precision': 0.9227359088030399, 'recall': 0.5552591463414634, 'f1': 0.6933142993100166, 'number': 2624} {'precision': 0.7442236598890942, 'recall': 0.6611247947454844, 'f1': 0.7002173913043479, 'number': 4872} {'precision': 0.8859649122807017, 'recall': 0.8278688524590164, 'f1': 0.8559322033898306, 'number': 122} {'precision': 0.9791538933169834, 'recall': 0.9782542113323124, 'f1': 0.9787038455645779, 'number': 3265} 0.8589 0.7326 0.7907 0.9942
0.004 4.0 34028 0.0615 {'precision': 0.9321486268174475, 'recall': 0.43978658536585363, 'f1': 0.5976178146038322, 'number': 2624} {'precision': 0.6900404088424055, 'recall': 0.5958538587848933, 'f1': 0.639497742042075, 'number': 4872} {'precision': 0.8738738738738738, 'recall': 0.7950819672131147, 'f1': 0.832618025751073, 'number': 122} {'precision': 0.9880660954712362, 'recall': 0.9889739663093415, 'f1': 0.9885198224399205, 'number': 3265} 0.8367 0.6784 0.7493 0.9932
0.0027 5.0 42535 0.0227 {'precision': 0.9356973995271868, 'recall': 0.7541920731707317, 'f1': 0.8351972990082295, 'number': 2624} {'precision': 0.843103448275862, 'recall': 0.8029556650246306, 'f1': 0.8225399495374264, 'number': 4872} {'precision': 0.8571428571428571, 'recall': 0.7868852459016393, 'f1': 0.8205128205128205, 'number': 122} {'precision': 0.9850655288021944, 'recall': 0.9898928024502297, 'f1': 0.9874732661167125, 'number': 3265} 0.9085 0.8471 0.8767 0.9963
0.0021 6.0 51042 0.0165 {'precision': 0.9341987466427932, 'recall': 0.7953506097560976, 'f1': 0.859201317414574, 'number': 2624} {'precision': 0.856687898089172, 'recall': 0.8282019704433498, 'f1': 0.8422041327489042, 'number': 4872} {'precision': 0.9174311926605505, 'recall': 0.819672131147541, 'f1': 0.8658008658008659, 'number': 122} {'precision': 0.9736523319200484, 'recall': 0.9846860643185299, 'f1': 0.9791381148165067, 'number': 3265} 0.9113 0.8671 0.8887 0.9966
0.0015 7.0 59549 0.0271 {'precision': 0.9294605809128631, 'recall': 0.6829268292682927, 'f1': 0.7873462214411249, 'number': 2624} {'precision': 0.8111135515045025, 'recall': 0.7580049261083743, 'f1': 0.7836604774535808, 'number': 4872} {'precision': 0.8389830508474576, 'recall': 0.8114754098360656, 'f1': 0.825, 'number': 122} {'precision': 0.9880879657910813, 'recall': 0.9908116385911179, 'f1': 0.9894479278177092, 'number': 3265} 0.8932 0.8103 0.8498 0.9956
0.0012 8.0 68056 0.0231 {'precision': 0.9250706880301602, 'recall': 0.7480945121951219, 'f1': 0.8272229245680573, 'number': 2624} {'precision': 0.8451156812339332, 'recall': 0.8097290640394089, 'f1': 0.8270440251572327, 'number': 4872} {'precision': 0.8962264150943396, 'recall': 0.7786885245901639, 'f1': 0.8333333333333333, 'number': 122} {'precision': 0.9889739663093415, 'recall': 0.9889739663093415, 'f1': 0.9889739663093415, 'number': 3265} 0.9086 0.8483 0.8774 0.9962
0.0009 9.0 76563 0.0224 {'precision': 0.9263715110683349, 'recall': 0.7336128048780488, 'f1': 0.8188005104210974, 'number': 2624} {'precision': 0.835820895522388, 'recall': 0.7931034482758621, 'f1': 0.8139020537124803, 'number': 4872} {'precision': 0.832, 'recall': 0.8524590163934426, 'f1': 0.8421052631578947, 'number': 122} {'precision': 0.9829787234042553, 'recall': 0.9905053598774886, 'f1': 0.9867276887871854, 'number': 3265} 0.9022 0.8386 0.8693 0.9960
0.0007 10.0 85070 0.0279 {'precision': 0.9425511197663097, 'recall': 0.7378048780487805, 'f1': 0.827704147071398, 'number': 2624} {'precision': 0.8349913494809689, 'recall': 0.7924876847290641, 'f1': 0.81318449873631, 'number': 4872} {'precision': 0.7846153846153846, 'recall': 0.8360655737704918, 'f1': 0.8095238095238095, 'number': 122} {'precision': 0.9865976241242765, 'recall': 0.9920367534456356, 'f1': 0.9893097128894318, 'number': 3265} 0.9056 0.8397 0.8714 0.9961

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.12.1
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.