Edit model card

L_Roberta3

This model is a fine-tuned version of distilroberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2095

  • Accuracy: 0.9555

  • F1: 0.9555

  • Precision: 0.9555

  • Recall: 0.9555

  • C Report: precision recall f1-score support

         0       0.97      0.95      0.96       876
         1       0.94      0.97      0.95       696
    

    accuracy 0.96 1572 macro avg 0.95 0.96 0.96 1572

weighted avg 0.96 0.96 0.96 1572

  • C Matrix: None

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall C Report C Matrix
0.2674 1.0 329 0.2436 0.9389 0.9389 0.9389 0.9389 precision recall f1-score support
       0       0.94      0.95      0.95       876
       1       0.94      0.92      0.93       696

accuracy                           0.94      1572

macro avg 0.94 0.94 0.94 1572 weighted avg 0.94 0.94 0.94 1572 | None | | 0.1377 | 2.0 | 658 | 0.1506 | 0.9408 | 0.9408 | 0.9408 | 0.9408 | precision recall f1-score support

       0       0.97      0.92      0.95       876
       1       0.91      0.96      0.94       696

accuracy                           0.94      1572

macro avg 0.94 0.94 0.94 1572 weighted avg 0.94 0.94 0.94 1572 | None | | 0.0898 | 3.0 | 987 | 0.1491 | 0.9548 | 0.9548 | 0.9548 | 0.9548 | precision recall f1-score support

       0       0.96      0.96      0.96       876
       1       0.95      0.95      0.95       696

accuracy                           0.95      1572

macro avg 0.95 0.95 0.95 1572 weighted avg 0.95 0.95 0.95 1572 | None | | 0.0543 | 4.0 | 1316 | 0.1831 | 0.9561 | 0.9561 | 0.9561 | 0.9561 | precision recall f1-score support

       0       0.97      0.95      0.96       876
       1       0.94      0.96      0.95       696

accuracy                           0.96      1572

macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 | None | | 0.0394 | 5.0 | 1645 | 0.2095 | 0.9555 | 0.9555 | 0.9555 | 0.9555 | precision recall f1-score support

       0       0.97      0.95      0.96       876
       1       0.94      0.97      0.95       696

accuracy                           0.96      1572

macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 | None |

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.2+cu102
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.