gemma-2b-embeddings / README.md
Jaume's picture
Update README.md
86431f6 verified
metadata
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - mteb
model-index:
  - name: Jaume/gemma-2b-embeddings
    results:
      - dataset:
          config: en
          name: MTEB AmazonCounterfactualClassification (en)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 67.49253731343282
          - type: ap
            value: 30.934850114823686
          - type: ap_weighted
            value: 30.934850114823686
          - type: f1
            value: 61.84797708567085
          - type: f1_weighted
            value: 70.73274750522187
          - type: main_score
            value: 67.49253731343282
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB AmazonReviewsClassification (en)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 34.896
          - type: f1
            value: 34.750819111826075
          - type: f1_weighted
            value: 34.750819111826075
          - type: main_score
            value: 34.896
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB Banking77Classification (default)
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
          split: test
          type: mteb/banking77
        metrics:
          - type: accuracy
            value: 58.425324675324674
          - type: f1
            value: 58.31484701136234
          - type: f1_weighted
            value: 58.314847011362325
          - type: main_score
            value: 58.425324675324674
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB EmotionClassification (default)
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
          split: test
          type: mteb/emotion
        metrics:
          - type: accuracy
            value: 29.685
          - type: f1
            value: 26.48682675929922
          - type: f1_weighted
            value: 32.280528326082006
          - type: main_score
            value: 29.685
        task:
          type: Classification
widget: []

SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 2048 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: GemmaModel 
  (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Jaume/gemma-2b-embeddings")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 2048]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX