Edit model card

SpanMarker with roberta-large on Jerado/enron_intangibles_ner

This is a SpanMarker model trained on the Jerado/enron_intangibles_ner dataset that can be used for Named Entity Recognition. This SpanMarker model uses roberta-large as the underlying encoder.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
Intangible "deal", "sample EES deal", "Enpower system"

Evaluation

Metrics

Label Precision Recall F1
all 0.4286 0.45 0.4390
Intangible 0.4286 0.45 0.4390

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("It seems that there is a single significant policy concern for the ASIC policy committee.")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 1 19.8706 216
Entities per sentence 0 0.1865 6

Training Hyperparameters

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 11
  • mixed_precision_training: Native AMP

Training Results

Epoch Step Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy
3.3557 500 0.0075 0.4444 0.1667 0.2424 0.9753
6.7114 1000 0.0084 0.5714 0.3333 0.4211 0.9793
10.0671 1500 0.0098 0.6111 0.4583 0.5238 0.9815

Framework Versions

  • Python: 3.10.12
  • SpanMarker: 1.5.0
  • Transformers: 4.40.0
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
10
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Jerado/span-marker-roberta-large-enron

Finetuned
(285)
this model

Evaluation results