JerryYanJiang's picture
update model card README.md
e4a83e7
metadata
license: mit
base_model: xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: task1_xlnet-large-cased_3_4_2e-05_0.01
    results: []

task1_xlnet-large-cased_3_4_2e-05_0.01

This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7090
  • Accuracy: 0.8147
  • F1: 0.0
  • Precision: 0.0
  • Recall: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6754 1.0 1629 0.5660 0.8147 0.0 0.0 0.0
0.7117 2.0 3258 0.6926 0.8147 0.0 0.0 0.0
0.6359 3.0 4887 0.7090 0.8147 0.0 0.0 0.0

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3