Phi-3.5-MultiCap-tool-embedding-past
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.7571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.037 | 0.1524 | 50 | 1.1134 |
1.0204 | 0.3048 | 100 | 1.0044 |
0.855 | 0.4571 | 150 | 0.9503 |
0.8786 | 0.6095 | 200 | 0.9030 |
0.8936 | 0.7619 | 250 | 0.8664 |
0.8912 | 0.9143 | 300 | 0.8372 |
0.7467 | 1.0667 | 350 | 0.8161 |
0.8009 | 1.2190 | 400 | 0.7984 |
0.7408 | 1.3714 | 450 | 0.7836 |
0.6925 | 1.5238 | 500 | 0.7728 |
0.6949 | 1.6762 | 550 | 0.7653 |
0.7537 | 1.8286 | 600 | 0.7597 |
0.7729 | 1.9810 | 650 | 0.7571 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 19
Model tree for Jinapeng/Phi-3.5-MultiCap-tool-embedding-past
Base model
microsoft/Phi-3.5-mini-instruct