Doge-60M-Instruct / README.md
JingzeShi's picture
Update README.md (#1)
fa7a28f verified
|
raw
history blame
3.12 kB
metadata
library_name: transformers
license: apache-2.0
datasets:
  - HuggingFaceTB/smoltalk
base_model:
  - JingzeShi/Doge-20M
language:
  - en
pipeline_tag: question-answering

Doge 60M Instruct

Doge is an ongoing research project where we aim to train a series of small language models to further explore whether the Transformer framework allows for more complex feedforward network structures, enabling the model to have fewer cache states and larger knowledge capacity.

In addition, Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by Jingze Shi, it only allows text input and text generation, for detailed algorithm and model architecture, please refer to Wonderful Matrices, the ongoing research repository is Wonderful Matrices.

Uses

from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer

tokenizer = AutoTokenizer.from_pretrained("JingzeShi/Doge-60M-Instruct")
model = AutoModelForCausalLM.from_pretrained("JingzeShi/Doge-60M-Instruct", trust_remote_code=True)

generation_config = GenerationConfig(
      max_new_tokens=100, 
      use_cache=True, 
      do_sample=True, 
      temperature=0.8, 
      repetition_penalty=1.0
)
steamer = TextStreamer(
      tokenizer=tokenizer, 
      skip_prompt=True
)
conversation = [
      {"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
    conversation=conversation,
    tokenize=True,
    return_tensors="pt",
)

outputs = model.generate(
    inputs, 
    tokenizer=tokenizer,
    generation_config=generation_config, 
    streamer=steamer
)

Model Details

TODO: The larger model is under training and will be uploaded soon.

Training:

Model Training Data Epochs Content Length LR Batch Size Precision
Doge-20M-Instruct HuggingFaceTB/smoltalk 2 8192 8e-5 1M bfloat16
Doge-60M-Instruct HuggingFaceTB/smoltalk 2 8192 6e-5 1M bfloat16

Environment:

  • Image: nvcr.io/nvidia/pytorch:24.10-py3
  • Hardware: 1x NVIDIA RTX 4090
  • Software: Transformers, TRL

Citation

@misc{shi2024wonderfulmatrices,
      title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture}, 
      author={Jingze Shi and Bingheng Wu},
      year={2024},
      eprint={2412.11834},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2412.11834}, 
}