lewtun's picture
lewtun HF staff
Add evaluation results on the mnli config of glue
988bacc
|
raw
history blame
7.37 kB
metadata
language: it
tags:
  - text-classification
  - pytorch
  - tensorflow
datasets:
  - multi_nli
  - glue
license: mit
pipeline_tag: zero-shot-classification
widget:
  - text: >-
      La seconda guerra mondiale vide contrapporsi, tra il 1939 e il 1945, le
      cosiddette potenze dell'Asse e gli Alleati che, come già accaduto ai
      belligeranti della prima guerra mondiale, si combatterono su gran parte
      del pianeta; il conflitto ebbe inizio il 1º settembre 1939 con l'attacco
      della Germania nazista alla Polonia e terminò, nel teatro europeo, l'8
      maggio 1945 con la resa tedesca e, in quello asiatico, il successivo 2
      settembre con la resa dell'Impero giapponese dopo i bombardamenti atomici
      di Hiroshima e Nagasaki.
    candidate_labels: guerra, storia, moda, cibo
    multi_class: true
model-index:
  - name: Jiva/xlm-roberta-large-it-mnli
    results:
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: mnli
          split: validation_matched
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8819154355578197
            verified: true
          - name: Precision Macro
            type: precision
            value: 0.8814638070461666
            verified: true
          - name: Precision Micro
            type: precision
            value: 0.8819154355578197
            verified: true
          - name: Precision Weighted
            type: precision
            value: 0.881571663280083
            verified: true
          - name: Recall Macro
            type: recall
            value: 0.8802419956104793
            verified: true
          - name: Recall Micro
            type: recall
            value: 0.8819154355578197
            verified: true
          - name: Recall Weighted
            type: recall
            value: 0.8819154355578197
            verified: true
          - name: F1 Macro
            type: f1
            value: 0.8802937937959167
            verified: true
          - name: F1 Micro
            type: f1
            value: 0.8819154355578197
            verified: true
          - name: F1 Weighted
            type: f1
            value: 0.8811955957302677
            verified: true
          - name: loss
            type: loss
            value: 0.3171548545360565
            verified: true

XLM-roBERTa-large-it-mnli

Version 0.1

matched-it acc mismatched-it acc
XLM-roBERTa-large-it-mnli 84.75 85.39

Model Description

This model takes xlm-roberta-large and fine-tunes it on a subset of NLI data taken from a automatically translated version of the MNLI corpus. It is intended to be used for zero-shot text classification, such as with the Hugging Face ZeroShotClassificationPipeline.

Intended Usage

This model is intended to be used for zero-shot text classification of italian texts. Since the base model was pre-trained trained on 100 different languages, the model has shown some effectiveness in languages beyond those listed above as well. See the full list of pre-trained languages in appendix A of the XLM Roberata paper For English-only classification, it is recommended to use bart-large-mnli or a distilled bart MNLI model.

With the zero-shot classification pipeline

The model can be loaded with the zero-shot-classification pipeline like so:

from transformers import pipeline
classifier = pipeline("zero-shot-classification",
                      model="Jiva/xlm-roberta-large-it-mnli", device=0, use_fast=True, multi_label=True)              

You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to classify in another:

# we will classify the following wikipedia entry about Sardinia"
sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna."
# we can specify candidate labels in Italian:
candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"]
classifier(sequence_to_classify, candidate_labels)
# {'labels': ['geografia', 'moda', 'politica', 'macchine', 'cibo'],
# 'scores': [0.38871392607688904, 0.22633370757102966, 0.19398456811904907, 0.13735772669315338, 0.13708525896072388]}

The default hypothesis template is the English, This text is {}. With this model better results are achieving when providing a translated template:

sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna."
candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"]
hypothesis_template = "si parla di {}"
# classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
# 'scores': [0.6068345904350281, 0.34715887904167175, 0.32433947920799255, 0.3068877160549164, 0.18744681775569916]}

With manual PyTorch

# pose sequence as a NLI premise and label as a hypothesis
from transformers import AutoModelForSequenceClassification, AutoTokenizer
nli_model = AutoModelForSequenceClassification.from_pretrained('Jiva/xlm-roberta-large-it-mnli')
tokenizer = AutoTokenizer.from_pretrained('Jiva/xlm-roberta-large-it-mnli')
premise = sequence
hypothesis = f'si parla di {}.'
# run through model pre-trained on MNLI
x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
                     truncation_strategy='only_first')
logits = nli_model(x.to(device))[0]
# we throw away "neutral" (dim 1) and take the probability of
# "entailment" (2) as the probability of the label being true 
entail_contradiction_logits = logits[:,[0,2]]
probs = entail_contradiction_logits.softmax(dim=1)
prob_label_is_true = probs[:,1]

Training

Version 0.1

The model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model.

| metric | value | |----------------- |------- | | learning_rate | 4e-6 | | optimizer | AdamW | | batch_size | 80 | | mcc | 0.77 | | train_loss | 0.34 | | eval_loss | 0.40 | | stopped_at_step | 9754 |

Version 0.0

This model was pre-trained on set of 100 languages, as described in the original paper. It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training.