TinyEnsemble-3x1.1B-TinyMoE
TinyEnsemble-3x1.1B-TinyMoE is a Mixture of Experts (MoE) made with the following models using LazyMergekit:
- cognitivecomputations/TinyDolphin-2.8-1.1b
- 78health/TinyLlama_1.1B-function-calling
- DaertML/TinyGauss-1.1B
𧩠Configuration
base_model: cognitivecomputations/TinyDolphin-2.8-1.1b
gate_mode: cheap_embed
dtype: bfloat16
experts:
- source_model: cognitivecomputations/TinyDolphin-2.8-1.1b
positive_prompts: ["write", "explain", "summarize", "how", "what", "acting"]
- source_model: 78health/TinyLlama_1.1B-function-calling
positive_prompts: ["code", "python", "javascript", "programming", "script", "run", "create"]
- source_model: DaertML/TinyGauss-1.1B
positive_prompts: ["count", "math", "algorithm", "crypto", "logic", "reason"]
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "JoPmt/TinyEnsemble-3x1.1B-TinyMoE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for JoPmt/TinyEnsemble-3x1.1B-TinyMoE
Merge model
this model