metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: valueeval24-bert-baseline-toy-2024-02-27
results: []
valueeval24-bert-baseline-toy-2024-02-27
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5633
- F1-score: {'Self-direction: thought attained': 0.67, 'Self-direction: thought constrained': 0, 'Self-direction: action attained': 0, 'Self-direction: action constrained': 0, 'Stimulation attained': 0, 'Stimulation constrained': 0, 'Hedonism attained': 0, 'Hedonism constrained': 0, 'Achievement attained': 0.33, 'Achievement constrained': 0, 'Power: dominance attained': 0, 'Power: dominance constrained': 0, 'Power: resources attained': 0, 'Power: resources constrained': 0, 'Face attained': 0, 'Face constrained': 0, 'Security: personal attained': 0, 'Security: personal constrained': 0, 'Security: societal attained': 0, 'Security: societal constrained': 0, 'Tradition attained': 0, 'Tradition constrained': 0, 'Conformity: rules attained': 0, 'Conformity: rules constrained': 0, 'Conformity: interpersonal attained': 0.57, 'Conformity: interpersonal constrained': 0, 'Humility attained': 0, 'Humility constrained': 0, 'Benevolence: caring attained': 0, 'Benevolence: caring constrained': 0, 'Benevolence: dependability attained': 0, 'Benevolence: dependability constrained': 1.0, 'Universalism: concern attained': 0, 'Universalism: concern constrained': 0, 'Universalism: nature attained': 0, 'Universalism: nature constrained': 0, 'Universalism: tolerance attained': 0, 'Universalism: tolerance constrained': 0}
- Marco-avg-f1-score: 0.07
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2